Abstract

This paper considers the transient conjugate heat transfer characterization of a partially confined liquid jet impinging on a rotating and uniformly heated solid disk of finite thickness and radius. A constant heat flux was imposed at the bottom surface of the solid disk at t=0, and heat transfer was monitored for the entire duration of the transient until the steady state condition was reached. Calculations were done for a number of disk materials using water as the coolant, covering a range of Reynolds numbers (225–900), Ekman numbers (7.08×105), nozzle-to-target spacing (β=0.251.0), confinement ratios (rp/rd=0.20.75), disk thicknesses to nozzle diameter ratios (b/dn=0.251.67), and solid to fluid thermal conductivity ratios (36.91–697.56). It was found that a higher Reynolds number decreases the time to achieve the steady state condition and increases the local and average Nusselt number. The duration of the transient increases with the increment of the Ekman number and disk thickness, and the reduction in the thermal diffusivity of the disk material.

1.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1989, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
2
(
2
), pp.
157
197
.
2.
Garimella
,
S. V.
, 2000, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
1049-0787,
11
, pp.
413
494
.
3.
Metzger
,
D. E.
, and
Grochowsky
,
L. D.
, 1977, “
Heat Transfer Between an Impinging Jet and a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
663
667
.
4.
Carper
,
H. J.
, Jr.
, and
Deffenbaugh
,
D. M.
, 1978, “
Heat Transfer From a Rotating Disk With Liquid Jet Impingement
,”
Proceedings of the Sixth International Heat Transfer Conference
,
Hemisphere
,
Washington, DC
, Vol.
4
, pp.
113
118
.
5.
Carper
,
H. J.
, Jr.
,
Saavedra
,
J. J.
, and
Suwanprateep
,
T.
, 1986, “
Liquid Jet Impingement Cooling of a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
108
(
3
), pp.
540
546
.
6.
Popiel
,
C. O.
, and
Boguslawski
,
L.
, 1986, “
Local Heat Transfer From a Rotating Disk in an Impinging Round Jet
,”
ASME J. Heat Transfer
0022-1481,
108
(
2
), pp.
357
364
.
7.
Thomas
,
S.
,
Faghri
,
A.
, and
Hankey
,
W. L.
, 1991, “
Experimental Analysis and Flow Visualization of a Thin Liquid Film on a Stationary and Rotating Disk
,”
ASME J. Fluids Eng.
0098-2202,
113
(
1
), pp.
73
80
.
8.
Saniei
,
N.
,
Yan
,
X.
, and
Schooley
,
W.
, 1998, “
Local Heat Transfer Characteristics of a Rotating Disk Under Jet Impingement Cooling
,”
Proceedings of the 11th International Heat Transfer Conference
,
J. S.
Lee
, ed.,
Korean Society of Mechanical Engineers
,
Kyongju, Korea
, Vol.
5
, pp.
445
450
.
9.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2003, “
Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface
,”
Exp. Fluids
0723-4864,
34
(
5
), pp.
556
565
.
10.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2004, “
Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
126
(
2
), pp.
184
192
.
11.
Rice
,
J.
,
Faghri
,
A.
, and
Cetegen
,
B. M.
, 2005, “
Analysis of a Free Surface Film From a Controlled Liquid Impinging Jet Over a Rotating Disk Including Conjugate Effects, With and Without Evaporation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
25–26
), pp.
5192
5204
.
12.
Basu
,
S.
, and
Cetegen
,
B. M.
, 2006, “
Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk by the Integral Method
,”
ASME J. Heat Transfer
0022-1481,
128
(
3
), pp.
217
225
.
13.
Lallave
,
J. C.
, and
Rahman
,
M. M.
, 2008, “
Modeling of Convective Cooling of a Rotating Disk by Partially Confined Liquid Jet Impingement
,”
ASME J. Heat Transfer
0022-1481,
130
(
10
), pp.
102201
102211
.
14.
Moallemi
,
M. K.
, and
Naraghi
,
M. N.
, 1994, “
An Experimental and Analytical Investigation of Ice Formation From a Circular Water Jet Impinging on a Horizontal Cold Surface
,”
ASME J. Heat Transfer
0022-1481,
116
(
4
), pp.
1016
1027
.
15.
Owens
,
R.
, and
Liburdy
,
J. A.
, 1995, “
Use of Thermochromatic Liquid Crystals in the Study of Jet Impingement Cooling: Sensitivity of Transient Heating Methods
,”
Proceedings of the SPIE, International Society of Optical Engineering
, San Diego, CA, Vol.
2546
, pp.
136
144
.
16.
Kumagai
,
S.
,
Suzuki
,
S.
,
Kubo
,
R.
, and
Kawazoe
,
M.
, 1995, “
Transient Cooling of a Hot Metal Plate With an Impinging Water Jet
,”
Heat Transfer-Jpn. Res.
0096-0802,
24
(
6
), pp.
538
550
.
17.
Francis
,
N. D.
, and
Wepfer
,
W. J.
, 1996, “
Jet Impingement Drying of a Moist Porous Solid
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
9
), pp.
1911
1923
.
18.
Fujimoto
,
H.
,
Takuda
,
H.
,
Hatta
,
N.
, and
Viskanta
,
R.
, 1999, “
Numerical Simulation of Transient Cooling of a Hot Solid by an Impinging Free Surface Jet
,”
Numer. Heat Transfer, Part A
1040-7782,
36
(
8
), pp.
767
780
.
19.
Rahman
,
M. M.
,
Bula
,
A. J.
, and
Leland
,
J. E.
, 2000, “
Analysis of Transient Conjugate Heat Transfer to a Free Impinging Jet
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
3
), pp.
330
339
.
20.
Liu
,
L. K.
,
Su
,
W. S.
, and
Hung
,
Y. H.
, 2004, “
Transient Convective Heat Transfer of Air Jet Impinging Onto a Confined Ceramic Based MCM Disk
,”
ASME J. Electron. Packag.
1043-7398,
126
(
1
), pp.
159
172
.
21.
Sarghini
,
F.
, and
Ruocco
,
G.
, 2004, “
Enhancement and Reversal Heat Transfer by Competing Modes in Jet Impingement
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
8–9
), pp.
1711
1718
.
22.
Lin
,
T. W.
,
Wu
,
M. C.
,
Liu
,
L. K.
,
Fang
,
C. J.
, and
Hung
,
Y. H.
, 2006, “
Cooling Performance of Using a Confined Slot Jet Onto Heated Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
128
(
1
), pp.
82
91
.
23.
Burmeister
,
L. C.
, 1993,
Convective Heat Transfer
, 2nd ed.,
Wiley
,
New York
, pp.
581
590
.
24.
White
,
F. M.
, 2003,
Fluid Mechanics
, 5th ed.,
McGraw-Hill
,
New York
.
25.
Özisik
,
M. N.
, 1993,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
, pp.
657
660
.
26.
Bejan
,
A.
, 1995,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
, pp.
595
602
.
27.
Vanyo
,
J. P.
, 1993,
Rotating Fluids in Engineering and Science
,
Butterworth
,
MA
, Chap. 14, pp.
233
264
.
28.
Fletcher
,
C. A. J.
, 1984,
Computational Galerkin Methods
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.