Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra104, the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra=103, the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra=103, the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios 0.4. For Ra104, the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra=103. For Ra104, the Maxwell–Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra=103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra104, where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra=103.

1.
Choi
,
U. S.
, 1995. “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
231
(
66
), pp.
99
105
.
2.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
797
817
.
3.
Trisaksri
,
V.
, and
Wongwises
,
S.
, 2007, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
512
523
.
4.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003. “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3639
3653
.
5.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
, 2008, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosure Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
29
(
5
), pp.
1326
1336
.
6.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, 2003, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
0947-7411,
39
, pp.
775
784
.
7.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
24
), pp.
5181
5188
.
8.
Nnanna
,
A. G. A.
, 2007, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
697
704
.
9.
Ho
,
C. J.
, and
Lin
,
C. C.
, 2006, “
Experiments on Natural Convection Heat Transfer of a Nanofluid in a Square Enclosure
,”
Proceedings of the 13th International Heat Transfer Conference
, Sydney, Australia.
10.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
, 2008, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
(
5
), pp.
657
665
.
11.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4003
4010
.
12.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
, 2008, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4506
4516
.
13.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
151
170
.
14.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Angue Minsta
,
H.
, 2007, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hystresis Phenomenon
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1492
1506
.
15.
Polidori
,
G.
,
Fohanno
,
S.
, and
Nguyen
,
C. T.
, 2007, “
A Note on Heat Transfer Modeling of Newtonian Nanofluids in Laminar Free Convection
,”
Int. J. Therm. Sci.
1290-0729,
46
(
8
), pp.
739
744
.
16.
Angue Minsta
,
H.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
, 2008, “
New Temperature and Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
48
(
2
), pp.
363
373
.
17.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
(
15
), pp.
153107
.
18.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
19.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamic: The finite Volume Method
,
Wiley
,
New York
.
20.
Guj
,
G.
, and
Stella
,
F.
, 1995, “
Natural Convection in Horizontal Eccentric Annuli: Numerical Study
,”
Numer. Heat Transfer
0149-5720,
27
, pp.
89
105
.
21.
Shu
,
C.
,
Yeo
,
K. S.
, and
Yao
,
Q.
, 2000, “
An Efficient Approach to Simulate Natural Convection in Arbitrary Eccentric Annuli by Vorticity Stream Function Formulation
,”
Num. Heat Transfer, Part A
,
38
, pp.
739
756
.
22.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
0022-1120,
74
, pp.
695
719
.
You do not currently have access to this content.