Melting of phase change materials (PCMs) embedded in metal foams is investigated. The two-temperature model developed accounts for volume change in the PCM upon melting. Volume-averaged mass and momentum equations are solved, with the Brinkman–Forchheimer extension to Darcy’s law employed to model the porous-medium resistance. Local thermal equilibrium does not hold due to the large difference in thermal diffusivity between the metal foam and the PCM. Therefore, a two-temperature approach is adopted, with the heat transfer between the metal foam and the PCM being coupled by means of an interstitial Nusselt number. The enthalpy method is applied to account for phase change. The governing equations are solved using a finite-volume approach. Effects of volume shrinkage/expansion are considered for different interstitial heat transfer rates between the foam and PCM. The detailed behavior of the melting region as a function of buoyancy-driven convection and interstitial Nusselt number is analyzed. For strong interstitial heat transfer, the melting region is significantly reduced in extent and the melting process is greatly enhanced as is heat transfer from the wall; the converse applies for weak interstitial heat transfer. The melting process at a low interstitial Nusselt number is significantly influenced by melt convection, while the behavior is dominated by conduction at high interstitial Nusselt numbers. Volume shrinkage/expansion due to phase change induces an added flow, which affects the PCM melting rate.

1.
Fath
,
H. E. S.
, 1991, “
Heat-Exchanger Performance for Latent-Heat Thermal Energy Storage-System
,”
Energy Convers. Manage.
0196-8904,
31
, pp.
149
155
.
2.
Cao
,
Y.
, and
Faghri
,
A.
, 1991, “
Performance-Characteristics of a Thermal-Energy Storage Module—A Transient PCM Forced-Convection Conjugate Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
93
101
.
3.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Thermal Management of Transient Power Spikes in Electronics—Phase Change Energy Storage or Copper Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
308
316
.
4.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
, pp.
191
199
.
5.
Zhang
,
Y. T.
, and
Liu
,
J.
, 2002, “
Numerical Study on Three-Region Thawing Problem During Cryosurgical Re-warming
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
265
277
.
6.
Simpson
,
J. E.
, and
Garimella
,
S. V.
, 1998, “
An Investigation of Solutal, Thermal and Flow Fields in Unidirectional Alloy Solidification
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2485
2502
.
7.
Sparrow
,
E. M.
,
Patankar
,
S. V.
, and
Ramadhyani
,
S.
, 1977, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
99
, pp.
520
526
.
8.
Gau
,
C.
, and
Viskanta
,
R.
, 1986, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
108
, pp.
174
181
.
9.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1221
1235
.
10.
Sun
,
D.
,
Garimella
,
S. V.
,
Singh
,
S. K.
, and
Naik
,
N.
, 2005, “
Numerical and Experimental Investigation of the Melt Casting of Explosives
,”
Propellants, Explos., Pyrotech.
0721-3115,
30
, pp.
369
380
.
11.
Jones
,
B. J.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2006, “
Experimental and Numerical Study of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2724
2738
.
12.
Beckermann
,
C.
, and
Viskanta
,
R.
, 1988, “
Natural Convection Solid/Liquid Phase Change in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
35
46
.
13.
Chellaiah
,
S.
, and
Viskanta
,
R.
, 1990, “
Natural Convection Melting of a Frozen Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
887
899
.
14.
Chellaiah
,
S.
, and
Viskanta
,
R.
, 1990, “
Melting of Ice-Aluminum Balls Systems
,”
Exp. Therm. Fluid Sci.
0894-1777,
3
, pp.
222
231
.
15.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 1999, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3373
3385
.
16.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
An Investigation of a Latent Heat Storage Porous Bed and Condensing Flow Through It
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
112
, pp.
1014
1022
.
17.
Ellinger
,
E. A.
, and
Beckermann
,
C.
, 1991, “
On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure
,”
Exp. Therm. Fluid Sci.
0894-1777,
4
, pp.
619
629
.
18.
Tong
,
X.
, and
Khan
,
J. A.
, 1996, “
Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material
,”
Numer. Heat Transfer, Part A
1040-7782,
30
, pp.
125
141
.
19.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2003, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
, pp.
116
125
.
20.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2005, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
127
, pp.
995
1004
.
21.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
22.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
23.
Issa
,
R. I.
, 1986, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
24.
25.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach
,
New York
.
26.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer Coefficient and Frictional Drag for Flow Across Metal Foams
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
27.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2008, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
130
, p.
024503
.
28.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
128
, pp.
793
799
.
You do not currently have access to this content.