Dissipative particle dynamics with energy conservation (eDPD) was used to study natural convection in liquid domain over a wide range of Rayleigh Numbers. The problem selected for this study was the Rayleigh–Bénard convection problem. The Prandtl number used resembles water where the Prandtl number is set to Pr = 6.57. The eDPD results were compared to the finite volume solutions, and it was found that the eDPD method calculates the temperature and flow fields throughout the natural convection domains correctly. The eDPD model recovered the basic features of natural convection, such as development of plumes, development of thermal boundary layers, and development of natural convection circulation cells (rolls). The eDPD results were presented by means of temperature isotherms, streamlines, velocity contours, velocity vector plots, and temperature and velocity profiles.

References

1.
Hoogerbrugge
,
P. J.
, and
Koelman
,
J. M. V. A.
, 1992, “
Simulating Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
,
19
(
3
), pp.
155
160
.
2.
Groot
,
R. D.
, and
Warren
,
P. B.
, 1997, “
Dissipative Particle Dynamics: Bridging the Gap Between Atomic and Mesoscopic Simulation
,”
J. Chem. Phys.
,
107
(
11
), pp.
4423
4435
.
3.
Español
,
P.
, and
Warren
,
P.
, 1995, “
Statistical Mechanics of Dissipative Particle Dynamics
,”
Europhys. Lett.
,
30
(
4
), pp.
191
196
.
4.
Marsh
,
C. A.
,
Backx
,
G.
, and
Ernst
,
M.
, 1997, “
Static and Dynamic Properties of Dissipative Particle Dynamics
,”
Phys. Rev. E
,
55
(
2
), pp.
1676
1691
.
5.
Groot
,
R. D.
, and
Rabone
,
K. L.
, 2001, “
Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants
,”
Biophys. J.
,
81
, pp.
725
736
.
6.
Fan
,
X. J.
,
Nhan
,
P. T.
,
Ng
,
T. Y.
,
Wu
,
X. H.
, and
Xu
,
D.
, 2003, “
Microchannel Flow of a Macromolecular Suspension
,”
Phys. Fluids
,
15
(
1
), pp.
11
21
.
7.
Vázquez-Quesada
,
A.
,
Ellero
,
M.
, and
Español
,
P.
, 2009, “
Consistent Scaling of Thermal Fluctuations in Smoothed Dissipative Particle Dynamics
,”
J. Chem. Phys.
,
130
,
034901
.
8.
Español
,
P.
, 1997, “
Dissipative Particle Dynamics With Energy Conservation
,”
Europhys. Lett.
,
40
(
6
), pp.
631
636
.
9.
Avalos
,
J. B.
, and
Mackie
,
A. D.
, 1997, “
Dissipative Particle Dynamics With Energy Conservation
,”
Europhys. Lett.
,
40
(
2
), pp.
141
146
.
10.
Pastewka
,
L.
,
Kauzlarić
,
D.
,
Greiner
,
A.
, and
Korvink
,
J.
, 2006, “
Thermostat With a Local Heat-Bath Coupling for Exact Energy Conservation in Dissipative Particle Dynamics
,”
Phys. Rev. E.
,
73
,
037701
.
11.
Ripoll
,
M.
,
Español
,
P.
, and
Ernst
,
M. H.
, 1998, “
Dissipative Particle Dynamics With Energy Conservation: Heat Conduction
,”
Int. J. Modern Phys. C
,
9
, pp. 1329–
1338
.
12.
Ripoll
,
M.
, and
Español
,
P.
, 2000, “
Heat Conduction Modeling With Energy Conservation Dissipative Particle Dynamics
,”
Int. J. Heat Technol.
,
18
, pp.
57
61
. See http://termserv.casaccia.enea.it/eurotherm/H&T.html.
13.
Qiao
,
R.
, and
He
,
P.
, 2007, “
Simulation of Heat Conduction in Naocomposite Using Energy-Conserving Dissipative Particle Dynamics
,”
Mol. Simul.
,
33
, pp.
667
683
.
14.
He
,
P.
, and
Qiao
,
R.
, 2008, “
Self-Consistent Fluctuating Hydrodynamics Simulation of Thermal Transport in Nanoparticle Suspensions
,”
J. Appl. Phys.
,
103
, p.
094305
.
15.
Chaudhri
,
A.
, and
Lukes
,
J. R.
, 2009, “
Multicomponent Energy Conserving Dissipative Particle Dynamics: A General Framework for Mesoscopic Heat Transfer Applications
,”
ASME J. Heat Transfer
,
131
, p.
033108
.
16.
Abu-Nada
,
E.
, 2010, “
Heat Transfer Simulation Using Energy Conservative Dissipative Particle Dynamics
,”
Mol. Simul.
,
36
(
5
), pp.
382
390
.
17.
Abu-Nada
,
E.
, 2010, “
Modeling of Various Heat Transfer Problems Using Dissipative Particle Dynamics
,”
Numer. Heat Transfer A-Appl.
,
58
, pp.
660
679
.
18.
Mackie
,
A. D.
,
Bonet
,
D.
,
Avalos
,
J. B.
, and
Navas
,
V.
, 1999, “
Dissipative Particle Dynamics With Energy Conservation: Modeling of Heat Flow
,”
Phys. Chem. Chem. Phys.
,
1
, pp.
2039
2049
.
19.
Abu-Nada
,
E.
, 2010, “
Natural Convection Heat Transfer Simulation Using Energy Conservative Dissipative Particle Dynamics
,”
Phys. Rev. E
,
81
, p.
056704
.
20.
Abu-Nada
,
E.
, 2011, “
Application of Dissipative Particle Dynamics to Natural Convection in Differentially Heated Enclosures
,”
Mol. Simul.
,
37
(
2
), pp.
135
152
.
21.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H.
, and
Campo
,
A.
, 2010, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
, pp.
479
491
.
22.
Fan
,
X.
,
Phan-Thien
,
N.
,
Chen
,
S.
,
Wu
,
X.
, and
Ng
,
T. Y.
, 2006, “
Simulating Flow of DNA Suspension Using Dissipative Particle Dynamics
,”
Phys. Fluids
,
18
, p.
063102
.
23.
White
,
F.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
.
24.
Ripoll
,
M.
, 2002, “
Kinetic Theory of Dissipative Particle Dynamics Models
,” Ph.D. thesis, Universidad Nacional de Educación a Distancia, Madrid.
25.
Besold
,
G.
,
Vattulainen
,
I.
,
Karttunen
,
M.
, and
Polson
,
J. M.
, 2000, “
Towards Better Integrators for Dissipative Particle Dynamics Simulations
,”
Phys. Rev. E
,
62
(
6
), pp.
R7611
R7614
.
26.
Nikunen
,
P.
,
Karttunen
,
M.
, and
Vattulainen
,
I.
, 2003, “
How Would You Integrate the Equations of Motion In Dissipative Particle Dynamics Simulations?
,”
Comp. Phys. Commun.
153
(
3
), pp.
407
423
.
27.
Duong-Hong
,
D.
,
Phan-Thien
,
N.
, and
Fan
,
X.
, 2004, “
An Implementation of No-Slip Boundary Conditions in DPD
,”
Comput. Mech.
,
35
, pp.
24
29
.
28.
Szymczak
,
P.
, and
Ladd
,
A. J. C.
, 2003, “
Boundary Conditions for the Stochastic Solutions of the Convection-Diffusion Equation
,”
Phys. Rev. E
,
68
, p.
036704
.
29.
Cottet
,
G. H.
, and
Koumoutsakos
,
P. D.
, 2000,
Vortex Methods: Theory and Practice
,
Cambridge University
,
Cambridge
.
30.
Abu-Nada
,
E.
, and
Oztop
,
H.
, 2009, “
Effects of Inclination Angle on Natural Convection in Enclosures Filled With Cu-water Nanofluid
,”
Int. J. Heat Fluid Flow
,
30
, pp. 669–
678
.
You do not currently have access to this content.