In this paper, an analytical method and a partial differential equation based solution to control temperature distribution for functionally graded (FG) plates is introduced. For the rectangular FG plate under consideration, it is assumed that the material properties such as thermal conductivity, density, and specific heat capacity vary in the width direction, and the governing heat conduction equation of the plate is a second-order partial differential equation. Using Lyapunov’s theorem, it is shown that by applying controlled heat flux through the boundary of the domain, the temperature distribution of the plate will approach a desired steady-state distribution. Numerical simulation is provided to verify the effectiveness of the proposed method such that by applying the boundary transient heat flux, in-domain distributed temperature converges to its desired steady-state temperature.

1.
Huang
,
C. H.
, and
Li
,
C. Y.
, 2003, “
A Three-Dimensional Optimal Control Problem in Determining the Boundary Control Heat Fluxes
,”
Heat Mass Transfer
0947-7411,
39
, pp.
589
598
.
2.
Payan
,
S.
,
Sarvari
,
S.
, and
Ajam
,
H.
, 2009, “
Inverse Boundary Design of Square Enclosures With Natural Convection
,”
Int. J. Therm. Sci.
1290-0729,
48
(
4
), pp.
682
690
.
3.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R.
, 1985,
Inverse Heat Conduction
,
Wiley
,
New York
.
4.
Scheuing
,
J.
, and
Tortorelli
,
D.
, 1996, “
Inverse Heat Conduction Problem Solution via Second-Order Design Sensitivities and Newton’s Method
,”
Inverse Probl. Sci. Eng.
1741-5977,
2
(
3
), pp.
227
262
.
5.
Duilkravich
,
G.
, and
Martin
,
T.
, 1996,
Inverse Shape and Boundary Condition Problem and Optimization in Heat Conduction
,
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, eds.,
Taylor and Francis
,
New York
.
6.
Boskovic
,
D. M.
, and
Kirstic
,
M.
, 2001, “
Boundary Control of an Unstable Heat Equation via Measurement of Domain-Advanced Temperature
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
12
), pp.
2022
2028
.
7.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2008, “
Boundary Control of Vibration of Symmetric Composite Laminated Plate
,”
Proceedings of the 17th IFAC World Congress
, Seoul, Korea.
8.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2008, “
Boundary Control of Vibration of General Composite Laminated Plate
,”
Proceedings of the 12th IEEE Conference INES
, Miami, FL.
9.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
IOM Communications
,
London, UK
.
10.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer
,
Dordrecht, The Netherlands
.
11.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
C. H.
, 2003, “
Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
494
504
.
12.
Marin
,
L.
, 2005, “
Numerical Solution of the Cauchy Problem for Steady-State Heat Transfer in Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4338
4351
.
13.
Chen
,
B.
,
Tong
,
L.
,
Gu
,
Y.
,
Zhang
,
H.
, and
Ochoa
,
O.
, 2004, “
Transient Heat Transfer Analysis of Functionally Graded Materials Using Adaptive Precise Time Integration and Graded Finite Elements
,”
Numer. Heat Transfer, Part B
1040-7790,
45
, pp.
181
200
.
14.
Wang
,
B. L.
, and
Tian
,
Z. H.
, 2005, “
Application of Finite Element-Finite Difference Method to the Determination of Transient Temperature Field in Functionally Graded Materials
,”
Finite Elem. Anal. Design
0168-874X,
41
, pp.
335
349
.
15.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
The Simple Boundary Element Methods for Transient Heat Conduction Analysis in Functionally Graded Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
4511
4539
.
16.
Qian
,
L. F.
, and
Batra
,
R. C.
, 2005, “
Three-Dimensional Transient Heat Conduction in a Functionally Graded Thick Plate With a Higher-Order Plate Theory and a Meshless Local Petrov-Galerkin Method
,”
Comput. Mech.
0178-7675,
35
, pp.
214
226
.
17.
Ching
,
H. K.
, and
Yen
,
S. C.
, 2006, “
Transient Thermoelastic Deformations of 2-D Functionally Graded Strips Under Nonuniformly Convective Heat Supply
,”
Compos. Struct.
0263-8223,
73
, pp.
381
393
.
18.
Wang
,
H.
,
Qin
,
Q. H.
, and
Kang
,
Y. L.
, 2006, “
A Meshless Model for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Mech.
0178-7675,
38
, pp.
51
60
.
19.
Golbahar Haghighi
,
M. R.
,
Eghtesad
,
M.
,
Necsulescu
,
D. S.
, and
Malekzade
,
P.
, 2010, “
Temperature Control of Functionally Graded Plates Using a Feedforward-Feedback Controller Based on the Inverse Solution and Proportional-Derivative Controller
,”
Engineering Conversion and Management
,
51
, pp.
140
146
.
20.
Cho
,
J. R.
, and
Oden
,
J. T.
, 2000, “
Functionally Graded Material: A Parametric Study on Thermal-Stress Characteristics Using the Crank-Nicolson-Galerkin Scheme
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
17
38
.
21.
Watanabe
,
Y.
, and
Momose
,
I.
, 2003, “
Magnetically Graded Materials Fabricated by Inhomogeneous Heat Treatment of Deformed Stainless Steel
,”
Ironmaking Steelmaking
0301-9233,
31
, pp.
265
268
.
22.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
23.
Zubov
,
V. L.
, 1964,
Methods of A. M. Liapunov and Their Application
,
Noordhoff
,
Gorning, The Netherlands
.
You do not currently have access to this content.