A theoretical analysis is presented to explore the transport characteristics of electro-osmotic flow and associated heat transfer of non-Newtonian power-law fluids in a parallel plate microchannel. The formulation shows that the key parameters governing the current problem include the flow behavior index, the length scale ratio (ratio of Debye length to half channel height), and the Joule heating parameter (ratio of Joule heating to surface heat flux). Analytical expressions are presented for velocity and temperature profiles, the friction coefficient, and the fully developed Nusselt number. In particular, closed-form solutions are obtained for several special values of the flow behavior index. The results reveal that reducing the length scale ratio tends to increase the friction coefficient, and the friction coefficient approaches infinite for slug flow. The increase in the friction coefficient due to increasing the flow behavior index is more noticeable for a smaller length scale ratio. For surface heating, increasing the flow behavior index amplifies the temperature difference between the wall and the fluid, and thus the temperature distribution broadens; while the opposite trend is observed for surface cooling with sufficiently large Joule heating parameter with negative sign. Depending on the value of Joule heating parameter, the fully developed Nusselt number can be either increased or decreased by increasing the flow behavior index and/or the length scale ratio. The effect of flow behavior index on the Nusselt number vanishes as the length scale ratio approaches zero (the limiting case for slug flow).

1.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
639
645
.
2.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
, 2005, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
1472
1487
.
3.
Chen
,
C. -H.
, 2007, “
Forced Convection Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2182
2189
.
4.
Chen
,
C. -H.
, and
Ding
,
C. -Y.
, 2011, “
Study on the Thermal Behavior and Cooling Performance of a Nanofluid-Cooled Microchannel Heat Sink
,”
Int. J. Therm. Sci.
1290-0729,
50
, pp.
378
384
.
5.
Khandurina
,
J.
,
McKnight
,
T. E.
,
Jacobson
,
S. C.
,
Waters
,
L. C.
,
Foote
,
R. S.
, and
Ramsey
,
J. M.
, 2000, “
Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices
,”
Anal. Chem.
0003-2700,
72
, pp.
2995
3000
.
6.
Verpoorte
,
E.
, 2002, “
Microfluidic Chips for Clinical and Forensic Analysis
,”
Electrophoresis
0173-0835,
23
, pp.
677
712
.
7.
Taylor
,
M. T.
,
Nguyen
,
P.
,
Ching
,
J.
, and
Petersen
,
K. E.
, 2003, “
Simulation of Microfluidic Pumping in a Genomic DNA Blood-Processing Cassette
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
201
208
.
8.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2008, “
Optimal Design of Microfluidic Networks Using Biologically Inspired Principles
,”
Microfluid. Nanofluid.
1613-4982,
4
, pp.
179
191
.
9.
Bourouina
,
T.
,
Bosseboeuf
,
A.
, and
Grandchamp
,
J. -P.
, 1997, “
Design and Simulation of an Electrostatic Micropump for Drug-Delivery Applications
,”
J. Micromech. Microeng.
0960-1317,
7
, pp.
186
188
.
10.
Lemoff
,
A. V.
, and
Lee
,
A. P.
, 2000, “
An AC Magnetohydrodynamic Micropump
,”
Sens. Actuators B
0925-4005,
63
, pp.
178
185
.
11.
Arulanandam
,
S.
, and
Li
,
D.
, 2000, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf., A
0927-7757,
161
, pp.
89
102
.
12.
Polson
,
N. A.
, and
Hayes
,
M. A.
, 2000, “
Electro-Osmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage
,”
Anal. Chem.
0003-2700,
72
, pp.
1088
1092
.
13.
Chen
,
C. -H.
, and
Santiago
,
J. G.
, 2002, “
A Planar Electro-Osmotic Micropump
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
672
683
.
14.
Probstein
,
R. F.
, 1994,
Physicochemical Hydrodynamics
, 2nd ed.,
Wiley
,
New York
.
15.
Mala
,
G. M.
,
Li
,
D.
,
Werner
,
C.
,
Jacobasch
,
H. J.
, and
Ning
,
Y. B.
, 1997, “
Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates With Electrokinetic Effects
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
489
496
.
16.
Yang
,
C.
,
Ng
,
C. B.
, and
Chan
,
V.
, 2002, “
Transient Analysis of Electroosmotic Flow in a Slit Microchannel
,”
J. Colloid Interface Sci.
0021-9797,
248
, pp.
524
527
.
17.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
, 2002, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
2203
2221
.
18.
Xuan
,
X. C.
, and
Li
,
D.
, 2005, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
0021-9797,
289
, pp.
291
303
.
19.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
, 2008, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
0021-9797,
326
, pp.
503
510
.
20.
Tang
,
G. H.
,
Li
,
X. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Electroosmotic Flow of Non-Newtonian Fluid in Microchannels
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
157
, pp.
133
137
.
21.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
, 1998, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
4229
4249
.
22.
Maynes
,
D.
, and
Webb
,
B. W.
, 2003, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1359
1369
.
23.
Maynes
,
D.
, and
Webb
,
B. W.
, 2003, “
Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
889
895
.
24.
Chen
,
C. -H.
, 2009, “
Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
022401
.
25.
Sadeghi
,
A.
, and
Saidi
,
M. H.
, 2010, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
3782
3791
.
26.
Bakaraju
,
O. R.
, 2009, “
Heat Transfer in Electroosmotic Flow of Power-Law Fluids in Microchannel
,” MS thesis, Cleveland State University, Cleveland, OH.
27.
Deen
,
W. M.
, 1998,
Analysis of Transport Phenomena
,
Oxford University Press
,
New York
.
28.
Burmeister
,
L. C.
, 1983,
Convective Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.