Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

References

1.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
Physical Properties of Carbon Nanotubes
(
Imperial College Press
,
London
, 1998).
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001,
“Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,”
Appl. Phys. Lett
.,
79
(
14
), pp.
2252
2254
.
3.
Biercuk
,
M. J.
,
Liaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T
.
, and
Fischer
,
J. E.
, 2002,
“Carbon Nanotube Composites for Thermal Management,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.
4.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006,
“Enhanced Thermal Contact Conductance Using Carbon Nanontube Array Interfaces,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
261
267
.
5.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006,
“Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays,”
Int. J. Heat Mass Transfer
,
49
, pp.
1658
1666.
6.
Zhang
,
K.
,
Chai
,
Y.
,
Yuen
,
M. M. F.
,
Xiao
,
D. G. W.
, and
Chan
,
P. C. H.
, 2008,
“Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling,”
Nanotechnology
,
19
, p.
215706
.
7.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007,
“Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
8.
Abel
,
P. B.
,
Korenyi-Both
,
A. L.
,
Honecy
,
F. S.
, and
Pepper
,
S. V.
, 1994,
“Study of Copper on Graphite With Titanium or Chromium Bond Layer,”
J. Mater. Res.
,
9
(
3
), pp.
617
624
.
9.
Datta
,
S. K.
,
Tewari
,
S. N.
,
Gatica
,
J. E.
,
Shih
,
W.
, and
Bentsen
,
L.
, 1999,
“Copper-Alloy Impregnated Carbon-Carbon Hybrid Composites for Electronic Packaging Applications,”
Metall. Mater. Trans. A
,
30A
, pp.
175
181
.
10.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
11.
Henry
,
A. S.
, and
Chen
,
G.
, 2008,
“Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.
12.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005,
“Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique,”
J. Heat Transfer
,
127
, pp.
315
322
.
13.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Stevens
,
R. J.
,
Beechem
,
T. E.
, and
Graham
,
S.
, 2008,
“Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface,”
J. Heat Transfer
,
130
, p.
062402
.
14.
Prasher
,
R.
, 2008,
“Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes,”
Phys. Rev. B
,
77
, p.
075424
.
15.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
, 2006,
“Thermal Conductance of Interfaces Between Highly Dissimilar Materials,”
Phys. Rev. B
,
73
, p.
144301
.
16.
Sinha
,
S. K.
, 1966,
“Lattice Dynamics of Copper,”
Phys. Rev.
,
143
(
2
), pp. 422–
433
.
17.
Gilat
,
G.
, and
Nicklow
,
R. M.
, 1966,
“Normal Vibrations in Aluminum and Derived Thermodynamic Properties,”
Phys. Rev.
,
143
(
2
), pp.
487
494
.
18.
Nicklow
,
R.
,
Wakabayashi
,
N.
, and
Smith
,
H. G.
, 1972,
“Lattice Dynamics of Pyrolytic Graphite,”
Phys. Rev. B
,
5
(
12
), pp.
4951
4962
.
19.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007,
“Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations”
Int. J. Heat Mass Transfer
,
50
, pp.
3977
3989
.
20.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
“Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary conductance,”
J. Heat Transfer
,
133
,
062401
.
21.
Ma
,
Q.
, and
Rosenberg
,
R. A.
, 1997,
“Interaction of Al Clusters With the (0001) Surface of Highly Oriented Pyrolytic Graphite,”
Surf. Sci.
,
391
, pp.
L1224
L1229
.
22.
Ma
,
Q.
, and
Rosenberg
,
R. A.
, 1999,
“Interaction of Ti With the (0001) Surface of Highly Ordered Pyrolitic Graphite,”
Phys. Rev. B
,
60
(
4
), pp.
2827
2832
.
23.
Dezellus
,
O.
, and
Eustathopoulos
,
N.
, 1999,
“The Role of van der Waals Interactions on Wetting and Adhesion in Metal/Carbon Systems,”
Scr. Mater.
,
40
(
11
), pp.
1283
1288
.
24.
Prasher
,
R.
, 2009,
“Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts,”
Appl. Phys. Lett.
,
94
, p.
041905
.
25.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004,
“Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites,”
J. Appl. Phys.
,
95
(
12
), pp.
8136
8144
.
26.
Hu
,
M.
,
Keblinski
,
P.
,
Wang
,
J.-S.
, and
Raravikar
,
N.
, 2008,
“Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube,”
J. Appl. Phys.
,
104
, p.
083503
.
27.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003,
“Interfacial Heat Flow in Carbon Nanotube Suspensions,”
Nature Mater.
,
2
(
11
), 11, pp.
731
734
.
28.
Duda
,
J. C.
,
Smoyer
,
J. L.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
, 2009,
“Extension of the Diffuse Mismatch Model for Thermal Boundary Conductance Between Isotropic and Anisotropic Materials,”
Appl. Phys. Lett.
,
95
, p.
031912.
29.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Beechem
,
T. E.
,
Smoyer
,
J. L.
, and
Norris
,
P. M.
, 2010,
“Inelastic Phonon Interactions at Solid-Graphite Interfaces,”
Superlattices Microstruct.
,
47
, pp.
550
555
.
30.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989,
“Thermal Boundary Resistance,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
667
.
31.
Little
,
W. A.
, 1959,
“The Transport of Heat Between Dissimilar Solids at Low Temperatures,”
Can. J. Phys.
,
37
(
3
), pp.
334
349
.
32.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993,
“Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,”
Phys. Rev. B
,
48
(
22
), pp.
16373
16387
.
33.
Phelan
,
P. E.
, 1998,
“Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors,”
J. Heat Transfer
,
120
, pp.
37
43
.
34.
Hopkins
,
P. E.
, and
Norris
,
P. M.
, 2007,
“Effects of Joint Vibrational States on Thermal Boundary Conductance,”
Nanoscale Microscale Thermophys. Eng.
,
11
(
3
), pp.
247
257
.
35.
Norris
,
P. M.
, and
Hopkins
,
P. E.
, 2009,
“Examining Interfacial Diffuse Phonon Scattering Through Transient Thermoreflectance Measurements of Thermal Boundary Resistance”
.
J. Heat Transfer
,
131
, p.
043207
.
36.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Smoyer
,
J. L.
,
Bauer
,
M. L.
,
English
,
T. E.
,
Saltonstall
,
C. B.
, and
Norris
,
P. M.
, 2010,
“On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
1
), pp.
21
33
.
37.
Duda
,
J. C.
,
Beechem
,
T. E.
,
Hopkins
,
P. E.
,
Smoyer
,
J. L.
, and
Norris
,
P. M.
, 2010,
“Role of Dispersion on Phononic Thermal Boundary Conductance,”
J. Appl. Phys.
,
108
, p.
073515
.
38.
Kruger
,
C. H.
,
2002,
Introduction to Physical Gas Dynamics
,
Krieger
,
Malabar, FL
.
39.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer, 5th
ed.
Wiley
,
New York.
40.
Sun
,
K.
,
Stroscio
,
M. A.
, and
Dutta
,
M.
, 2009,
“Graphite C-Axis Thermal Conductivity,”
Superlattices Microstruct.
,
45
, pp.
60
64
.
41.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Phinney
,
L. M.
,
Policastro
,
S. A.
, and
Kelly
,
R. G.
, 2008,
“Thermal Conductivity in Nanoporous Gold Films During Electron-Phonon Nonequilibrium,”
J. Nanomater.
(
418050
).
42.
Hopkins
,
P. E.
, 2009,
“Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces,”
J. Appl. Phys.
,
106
(
1
), p.
013528.
43.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001,
“Thermal Transport Measurements of Individual Multiwalled Nanotubes,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
44.
Chen
,
Z.
,
Jang
,
W.
,
Bao
,
W.
,
Lau
,
C. N.
, and
Dames
,
C.
, 2009,
“Thermal Contact Resistance Between Graphene and Silicon Dioxide,”
Appl. Phys. Lett.
,
95
(
16
), p.
161910
.
45.
Kittel
,
C.
, 2005.
Introduction to Solid State Physics,
8th ed.
Wiley, Hoboken
,
NJ
.
46.
Lopez-Salido
,
I.
,
Lim
,
D. C.
,
Dietsche
,
R.
,
Bertram
,
N.
, and
Kim
,
Y. D.
, 2006,
“Electronic and Geometric Properties of Au Nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) Studied Using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM),”
J. Phys. Chem. B
,
110
(
3
), pp.
1128
1136
.
47.
Lee
,
J.
,
Tanaka
,
T.
,
Seo
,
K.
,
Hirai
,
N.
,
Lee
,
J.-G.
, and
Mori
,
H.
, 2006,
“Wetting of Au and Ag Particles on Monocrystalline Graphite Substrates,”
Rare Metals
,
25
(
5
), pp.
469
472
.
48.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
, 2000,
“Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique,”
Microscale Thermophys. Eng.
,
4
, pp.
51
60
.
49.
Norris
,
P. M.
,
Caffrey
,
A. P.
,
Stevens
,
R. J.
,
Klopf
,
J. M.
,
McLeskey
,
J. T.
, and
Smith
,
A. N.
, 2003,
“Femtosecond Pump-Probe Nondestructive Examination of Materials,”
Rev. Sci. Instrum.
,
74
(
1
), pp.
400
406
.
50.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2006,
“Signal Analysis and Characterization of Experimental Setup for the Transient Thermoreflectance Technique,”
Review of Scientific Instruments
,
77
, p.
084901
.
51.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
, 2002,
“Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures,”
J. Heat Transfer
,
124
, pp.
223
241
.
52.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003,
“Nanoscale Thermal Transport,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
53.
Yang
,
S.
,
Kooij
,
E. S.
,
Poelsema
,
B.
,
Lohse
,
D.
, and
Zandvliet
,
H. J. W.
, 2008,
“Correlation Between Geometry and Nanobubble Distribution on HOPG Surface,”
Europhys. Lett.
,
81
(
6
), p.
64006
.
You do not currently have access to this content.