A theoretical approach based on gaskinetic theory is described and applied for the modeling of steady-state free-molecule gaseous heat conduction within a diffusive enclosure. With a representative model of microelectromechanical system (MEMS) devices with integrated heaters, the heat transfer between the heated component and its gaseous ambient enclosed in a high vacuum is studied in detail. A molecular simulation based on the direct simulation Monte Carlo (DSMC) method is also employed to validate the theoretical solutions and to study the effects of incomplete thermal accommodation. The impacts of the finite size of the heated beam as well as the gap between the beam and a substrate on the heat transfer are investigated to examine the appropriateness of the common assumptions employed in the modeling of Pirani sensors. Interesting phenomena that are unique in the free-molecule regime are observed and discussed. These studies are valuable to the design of MEMS devices with microheaters.

References

1.
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1991, “
Microfabricated Thermal Absolute-Pressure Sensor With On-Chip Digital Front-End Processor
,”
IEEE J. Solid-State Circuits
,
26
, pp.
1998
2007
.
2.
Weng
,
P. K.
, and
Shie
,
J. S.
, 1994, “
Micro-Pirani Vacuum Gauge
,”
Rev. Sci. Instrum.
,
65
(
2
), pp.
492
499
.
3.
King
,
W. P.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2004, “
Comparison of Thermal and Piezoresistive Sensing Approaches for Atomic Force Microscopy Topography Measurements
,”
Appl. Phys. Lett.
,
85
(
11
), pp.
2086
2088
.
4.
Nelson
,
B. A.
, and
King
,
W. P.
, 2007, “
Measuring Material Softening With Nanoscale Spatial Resolution Using Heated Silicon Probes
,”
Rev. Sci. Instrum.
,
78
(
2
), p.
023702
.
5.
Sheehan
,
P. E.
,
Whitman
,
L. J.
,
King
,
W. P.
, and
Nelson
,
B. A.
, 2004, “
Nanoscale Deposition of Solid Inks via Thermal Dip Pen Nanolithography
,”
Appl. Phys. Lett.
,
85
(
9
), pp.
1589
1591
.
6.
Martin
,
M. J.
, and
Houston
,
B. H.
, 2009, “
Free-Molecular Heat Transfer of Vibrating Cantilever and Bridges
,”
Phys. Fluids
,
21
(
1
), p.
017101
.
7.
Park
,
K.
,
Cross
,
G. L. W.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2008, “
Experimental Investigation on the Heat Transfer Between a Heated Microcantilever and a Substrate
,”
ASME J. Heat Transfer
,
130
(
10
), p.
102401
.
8.
Passian
,
A.
,
Wig
,
A.
,
Meriaudeau
,
F.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2002, “
Knudsen Forces on Microcantilevers
,”
J. Appl. Phys.
,
92
(
10
), pp.
6326
6333
.
9.
Passian
,
A.
,
Warmack
,
R. J.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2003, “
Thermal Transpiration at the Microscale: A Crookes Cantilever
,”
Phys. Rev. Lett.
,
90
, p.
124503
.
10.
Passian
,
A.
,
Warmack
,
R. J.
,
Wig
,
A.
,
Farahi
,
R. H.
,
Meriaudeau
,
F.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2003, “
Observation of Knudsen Effect With Microcantilevers
,”
Ultramicroscopy
,
97
(
1-4
), pp.
401
406
.
11.
Lereu
,
A. L.
,
Passian
,
A.
,
Warmack
,
R. J.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2004, “
Effect of Thermal Variations on the Knudsen Forces in the Transitional Regime
,”
Appl. Phys. Lett.
,
84
, pp.
1013
1015
.
12.
Gotsmann
,
B.
, and
Durig
,
U.
, 2005, “
Experimental Observation of Attractive and Repulsive Thermal Forces on Microcantilevers
,”
Appl. Phys. Lett.
,
87
(
19
), p.
194102
.
13.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
, 2007, “
Thermal Conduction From Microcantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
,
101
(
1
), p.
014906
.
14.
Phinney
,
L. M.
,
Serrano
,
J. R.
,
Piekos
,
E. S.
,
Torczynski
,
J. R.
,
Gallis
,
M. A.
, and
Gorby
,
A. D.
, 2010, “
Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072402
.
15.
Kim
,
K. J.
, and
King
,
W. P.
, 2009, “
Thermal Conduction between a Heated Microcantilever and a Surrounding Air Environment
,”
Appl. Therm. Eng.
,
29
(
8-9
), pp.
1631
1641
.
16.
Masters
,
N. D.
,
Ye
,
W.
, and
King
,
W. P.
, 2005, “
The Impact of Subcontinuum Gas Conduction on Topography Measurement Sensitivity Using Heated Atomic Force Microscope Cantilevers
,”
Phys. Fluids
,
17
(
10
), p.
100615
.
17.
Liu
,
H.
,
Wang
,
M.
,
Wang
,
J.
,
Zhang
,
G.
,
Liao
,
H.
,
Huang
,
R.
, and
Zhang
,
X.
, 2007, “
Monte Carlo Simulations of Gas Flow and Heat Transfer in Vacuum Packaged MEMS Devices
,”
Appl. Therm. Eng.
,
27
(
2-3
), pp.
323
329
.
18.
Stark
,
B. H.
,
Mei
,
Y.
,
Zhang
,
C.
, and
Najafi
,
K.
, 2003, “
A Doubly Anchored Surface Micromachined Pirani Gauge for Vacuum Package Characterization
,”
Proceedings of the 16th International IEEE Micro Electro Mechanical Systems (MEMS)
,
Kyoto, Japan
, pp.
506
509
.
19.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
New York
.
20.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
, 1961,
Flow of Rarefied Gases
,
Princeton University Press
,
Princeton, NJ
.
21.
Narasimha
,
R.
, 1961, “
Orifice Flow of High Knudsen Number
,”
J. Fluid Mech.
,
10
(
3
), pp.
371
384
.
22.
Cai
,
C.
, 2008, “
Heat Transfer in Vacuum Packaged Microelectromechanical System Devices
,”
Phys. Fluids
,
20
(
1
), p.
017103
.
23.
Cai
,
C.
, and
Liu
,
D.
, 2008, “
Collisionless Gas Flows. I. Inside Arbitrary Enclosures
,”
Phys. Fluids
,
20
(
6
), p.
067105
.
24.
Zhu
,
T.
, and
Ye
,
W.
, 2010, “
Theoretical and Numerical Studies of Non-Continuum Gas-Phase Heat Conduction in Micro/Nano Devices
,”
Numer. Heat Transfer, Part B
,
57
(
3
), pp.
203
226
.
25.
Fang
,
Y.
, and
Liou
,
W. W.
, 2002, “
Computations of the Flow and Heat Transfer in Microdevices Using DSMC With Implicit Boundary Conditions
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
338
345
.
26.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases: With an Introduction to Statistical Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.