An experimental study is conducted to investigate the effects of inlet restriction (orifice) on flow boiling instability in a single horizontal microtube. The test-section is composed of a stainless steel tube with an inner diameter of 889 μm, and a length of 150 mm. Experiments are performed for three different orifice configurations with 20%, 35%, and 50% area ratio. Mass flux is varied from 700 to 3000 kg/m2 · s, whereas the heat flux is varied from 6 to 27 W/cm2. The dielectric coolant FC-72 is selected as the working fluid. In the absence of an orifice at the inlet, four oscillation types are observed at the onset of flow instability; it is also noticed that the frequency of the oscillations increases with increasing heat flux, while the amplitude remains constant. The addition of an orifice at the inlet helps stabilizing the flow without generating significant pressure drop at the same operating condition as the microtube without orifice. The 20% area ratio orifice shows better performance at low mass fluxes (<1000 kg/m2 · s). Whereas, at high mass fluxes (>2000 kg/m2 · s), 50% and 35% area ratio orifices are efficient in stabilizing the flow or delaying the onset of flow instability. Therefore, selecting the area ratio of the orifice depends on the operating condition. A small area ratio orifice is preferably used at low mass fluxes, whereas a large area ratio orifice is more suitable for high mass fluxes.

References

1.
Xue
,
J. L.
,
Zhang
,
W.
,
Wang
,
Q. W.
, and
Su
,
Q. C.
, 2006, “
Flow Instability and Transient Flow Patterns Inside Intercrossed Silicon Microchannel Array in a Micro-Timescale
,”
Int. J. Multiphase Flow
,
32
, pp.
568
592
.
2.
Muwanga
,
R.
,
Hassan
,
I.
, and
MacDonald
,
R.
, 2007, “
Characteristics of Flow Boiling Oscillations in Silicon Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
129
, pp.
1341
1351
.
3.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
, 2007, “
Flow Boiling of Liquid Nitrogen in Micro-Tubes. Part I—The Onset of Nucleate Boiling, Two-Phase Flow Instability and Two-Phase Flow Pressure Drop
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4999
5016
.
4.
Wang
,
G.
,
Cheng
,
P.
, and
Wu
,
H.
, 2007, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4297
4310
.
5.
Singh
,
S. G.
,
Bhide
,
R. R.
,
Duttagupta
,
S. P.
,
Puranik
,
B. P.
, and
Agrawal
,
A.
, 2009, “
Two-Phase Flow Pressure Drop Characteristics in Trapezoidal Silicon Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
32
, pp.
887
900
.
6.
Chen
,
T.
, and
Garimella
,
S. V.
, 2011, “
Local Heat Transfer Distribution and Effect of Instabilities During Flow Boiling in a Silicon Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3179
3190
.
7.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
, 1973, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Design
,
25
, pp.
165
192
.
8.
Kakac
,
S.
, and
Bon
,
B.
, 2008, “
A Review of Two-Phase Flow Dynamic Instabilities in Tube Boiling Systems
,”
Int. J. Heat Mass Transfer
,
51
, pp.
399
433
.
9.
Stenning
,
A. H.
, and
Veziroglu
,
T. N.
, 1969, “
Instabilities in the Flow of a Boiling Liquid
,”
ASME J. Basic Eng.
,
86
, pp.
213
217
.
10.
Yuncu
,
H.
,
Yildirim
,
O. T.
, and
Kakac
,
S.
, 1991, “
Two-Phase Flow Instabilities in a Horizontal Single Boiling Channel
,”
Appl. Sci. Res.
,
48
, pp.
83
104
.
11.
Wang
,
Q.
,
Chen
,
X. J.
,
Kakac
,
S.
, and
Ding
,
Y.
, 1994, “
An Experimental Investigation of Density-Wave-Type Oscillations in a Convective Boiling Upflow System
,”
Int. J. Heat Fluid Flow
,
15
, pp.
241
246
.
12.
Mawasha
,
P. R.
,
Gross
,
R. J.
, and
Quinn
,
D. D.
, 2001, “
Pressure-Drop Oscillations in a Horizontal Single Boiling Channel
,”
Heat Transfer Eng.
,
22
(
5
), pp.
26
34
.
13.
Dogan
,
T.
,
Kakac
,
S.
, and
Veziroglu
,
T. N.
, 1983, “
Analysis of Forced-Convection Boiling Flow Instabilities in a Single-Channel Upflow System
,”
Int. J. Heat Fluid Flow
,
4
, pp.
145
156
.
14.
Padki
,
M. M.
,
Liu
,
H. T.
, and
Kakac
,
S.
, 1991, “
Two-Phase Flow Pressure-Drop Type and Thermal Oscillations
,”
Int. J. Heat Fluid Flow
,
12
, pp.
240
248
.
15.
Wang
,
Q.
,
Chen
,
X. J.
,
Kakac
,
S.
, and
Ding
,
Y.
, 1996, “
Boiling Onset Oscillation: A New Type of Dynamic Instability in a Forced-Convection Upflow Boiling System
,”
Int. J. Heat Fluid Flow
,
17
, pp.
418
423
.
16.
Barber
,
J.
,
Sefiane
,
K.
,
Brutin
,
D.
, and
Tadrist
,
L.
, 2009, “
Hydrodynamics and Heat Transfer During Flow Boiling Instabilities in a Single Microchannel
,”
Appl. Therm. Eng.
,
29
, pp.
1299
1308
.
17.
Ding
,
Y.
,
Kakac
,
S.
, and
Chen
,
X. J.
, 1995, “
Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel
,”
Exp. Therm. Fluid Sci.
,
11
, pp.
327
342
.
18.
Kennedy
,
J. E.
,
Roach
,
G. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
U. M.
, and
Quershi
,
Z. H.
, 2000, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
ASME J. Heat Transfer
,
122
, pp.
118
125
.
19.
Huh
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2007, “
Flow Pattern Transition Instability During Flow Boiling in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1049
1060
.
20.
Fang
,
R.
,
Jiang
,
W.
, and
Khan
,
J.
, 2011, “
Experimental Study on the Effect of Synthetic Jet on Flow Boiling Instability in a Microchannel
,”
Proceedings of ASME 9th International Conference on Nanochannels, Microchannels, and Minichannels
.
21.
Xu
,
J.
,
Liu
,
G.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wang
,
B.
, 2009, “
Seed Bubbles Stabilize Flow and Heat Transfer in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
35
, pp.
773
790
.
22.
Liu
,
G.
,
Xu
,
J.
,
Yang
,
Y.
, and
Zhang
,
W.
, 2010, “
Active Control of Flow and Heat Transfer in Silicon Microchannels
,”
J. Micromech. Microeng.
,
20
, p.
045006
.
23.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
, pp.
389
396
.
24.
Schneider
,
B.
,
Kosar
,
A.
, and
Peles
,
Y.
, 2007, “
Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2838
2854
.
25.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
, 2008, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2267
2281
.
26.
Park
,
J. E.
,
Thome
,
J. R.
, and
Michel
,
B.
, 2009, “
Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp. 1–8.
27.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
28.
Blasius
,
H.
, 1913, “
Das Ähnlichkeitsgesetz bei Reibungvorgägen in Flüssigkeiten
,”
Forchg. Arb. Ing. Wes.
,
131
, pp.
1
41
.
29.
Rands
,
C.
,
Webb
,
B. W.
, and
Maynes
,
D.
, 2006, “
Characterization of Transition to Turbulence in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2924
2930
.
30.
Ghajar
,
A. J.
,
Tang
,
C. C.
, and
Cook
,
W. L.
, 2010, “
Experimental Investigation of Friction Factor in the Transition Region for Water Flow in Minitubes and Microtubes
,”
Heat Transfer Eng.
,
31
, pp.
646
657
.
31.
Barlak
,
S.
,
Yapc
,
S.
, and
Sara
,
O. N.
, 2011, “
Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes
,”
Int. J. Therm. Sci.
,
50
, pp.
361
368
.
32.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
, 2007, “
Single-Phase Pressure Drop and Heat Transfer Characteristics of Turbulent Liquid Nitrogen Flow in Micro-Tubes
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1993
2001
.
33.
Wang
,
G.
, and
Cheng
,
P.
, 2008, “
An Experimental Study of Flow Boiling Instability in a Single Microchannel
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
1229
1234
.
34.
Celata
,
G. P.
,
Saha
,
S. K.
,
Zummo
,
G.
, and
Dossevi
,
D.
, 2010, “
Heat Transfer Characteristics of Flow Boiling in a Single Horizontal Microchannel
,”
Int. J. Therm. Sci.
,
49
, pp.
1086
1094
.
35.
Kandlikar
,
S. G.
, 2006, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
441
447
.
36.
Schilder
,
B.
,
Man
,
S. Y. C.
,
Kasagi
,
N.
,
Hardt
,
S.
, and
Stephan
,
P.
, 2010, “
Flow Visualization and Local Measurement of Forced Convection Heat Transfer in a Microtube
,”
ASME J. Heat Transfer
,
132
, p.
031702
.
37.
Xu
,
J.
,
Zhou
,
J.
, and
Gan
,
Y.
, 2005, “
Static and Dynamic Flow Instability of a Parallel Microchannel Heat Sink at High Heat Fluxes
,”
Energy Convers. Manage.
,
46
, pp.
313
334
.
38.
Xu
,
J. L.
,
Zhou
,
J. J.
,
Gan
,
Y. H.
, and
Chen
,
Y.
, 2004, “
Unsteady Flow Phenomenon in a Heated Microchannel at High Heat Fluxes
,”
Exp. Heat Transfer
,
17
, pp.
299
319
.
39.
Hwang
,
Y. W.
, and
Kim
,
M. S.
, 2006, “
The Pressure Drop in Microtubes and the Correlation Development
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1804
1812
.
40.
Lin
,
T.-Y.
, and
Yang
,
C.-Y.
, 2007, “
An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by the Method of Liquid Crystal Thermography
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4736
4742
.
41.
Tam
,
L. M.
,
Tam
,
H. K.
, and
Ghajar
,
A. J.
, 2011, “
Simultaneous Heat Transfer and Pressure Drop Measurements for a Horizontal Micro-Tube
,”
Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii
.
42.
Yang
,
C.-Y.
, 2003, “
Friction Characteristics of Water, R-134a, and Air in Small Tubes
,”
Microscale Thermophys. Eng.
,
7
(
4
), pp.
335
348
.
You do not currently have access to this content.