The fluid flow and conjugate heat and mass transfer across a hollow fiber membrane tube bundle used for liquid desiccant air dehumidification are investigated. In this process, humid air flows across the fiber bank and salt solution flows inside the fibers packed in a shell. They exchange heat and moisture through the membranes. To overcome the difficulties in the direct modeling of the whole tube bundle, a representative cell, which comprises of a single fiber, a solution stream inside the fiber, and an air stream flowing across the fiber, is selected as the calculation domain. The liquid flow inside the fibers is assumed to be laminar due to the low Reynolds numbers, while the air flow across the bank is considered to be turbulent as a result from the disturbances from the numerous fibers. The governing equations for fluid flow and heat and mass transfer in the two flows and in the membrane are coupled together and solved numerically with a self-built code. Experimental work on hollow fiber membrane-based liquid desiccant air dehumidification is performed to validate the model. The fundamental data on friction factor, Nusselt and Sherwood numbers on both the shell and the tube sides are then obtained for Re = 300–600.

References

1.
Zhang
,
L. Z.
, 2008,
Total Heat Recovery: Heat and Moisture Recovery From Ventilation Air
,
Nova Science Publishers, Inc.
,
New York
.
2.
Zhang
,
L. Z.
, and
Niu
,
J. L.
, 2003, “
A Pre-Cooling Environmental Control Cooling Cycle in Combination With Chilled-Ceiling Panels
,”
Energy
,
28
(
3
), pp.
275
292
.
3.
Liu
,
X. H.
,
Jiang
,
Y.
, and
Qu
,
K. Y.
, 2007, “
Heat and Mass Transfer Model of Cross-Flow Liquid Desiccant Air Dehumidifier/Regenerator
,”
Energy Convers. Manage.
,
48
(
2
), pp.
546
554
.
4.
Zhang
,
Y. P.
,
Jiang
,
Y.
,
Zhang
,
L. Z.
,
Deng
,
Y. C.
, and
Jin
,
Z. F.
, 2000, “
Analysis of Thermal Performance and Energy Savings of Membrane Based Heat Recovery Ventilator
,”
Energy
,
25
(
6
), pp.
515
527
.
5.
Vali
,
A.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
, 2009, “
Numerical Model and Effectiveness Correlations for a Run-Around Heat Recovery System With Combined Counter and Cross-Flow Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
25-26
), pp.
5827
5840
.
6.
Sphaier
,
L. A.
, and
Worek
,
W. M.
, 2004, “
Analysis of Heat and Mass Transfer in Porous Sorbents Used in Rotary Regenerators
,”
Int. J. Heat Mass Transfer
,
47
(
13-14
), pp.
3415
3430
.
7.
Xiao
,
F.
,
Ge
,
G. M.
, and
Niu
,
X. F.
, 2011, “
Control Performance of a Dedicated Outdoor Air System Adopting Liquid Desiccant Dehumidification
,”
Appl. Energy
,
88
(
1
), pp.
143
149
.
8.
Ge
,
T. S.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
, 2010, “
Experimental Comparison and Analysis on Silica Gel and Polymer Coated Fn-Tube Heat Exchangers
,”
Energy
,
35
(
7
), pp.
2893
2900
.
9.
Bergero
,
S.
, and
Chiari
,
A.
, 2001, “
Experimental and Theoretical Analysis of Air Humidification Dehumidification Processes Using Hydrophobic Capillary Modules
,”
Appl. Therm. Eng.
,
21
(
11
), pp.
1119
1135
.
10.
Kneifel
,
K.
,
Nowak
,
S.
,
Albrecht
,
W.
,
Hilke
,
R.
,
Just
,
R.
, and
Peinemann
,
K. V.
, 2006, “
Hollow Fiber Membrane Module for Air Humidity Control
,”
J. Membr. Sci.
,
276
(1-2), pp.
241
251
.
11.
Scovazzo
,
P.
,
Burgos
,
J.
,
Hoehn
,
A.
, and
Todd
,
P.
, 1998, “
Hydrophilic Membrane-Based Humidity Control
,”
J. Membr. Sci.
,
149
(
1
), pp.
69
81
.
12.
Johnson
,
D.
,
Yavuzturk
,
W. C.
, and
Pruis
,
J.
, 2003, “
Analysis of Heat and Mass Transfer Phenomena in Hollow Fiber Membranes Used for Evaporative Cooling
,”
J. Membr. Sci.
,
227
(
1-2
), pp.
159
171
.
13.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
, 3rd ed.,
John Wiley & Sons Publishers
, Inc.,
New York
.
14.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993, “
Convective Heat and Mass Transfer
,”
McGraw-Hill Publishers, Inc.
,
New York
.
15.
Mandhani
,
V. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2002, “
Forced Convection Heat Transfer in Tube Banks in Cross-Flow
,”
Chem. Eng. Sci.
,
57
(
3
), pp.
379
391
.
16.
Shibu
,
S.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2001, “
Power Law Fluid Flow Over a Bundle of Cylinders at Intermediate Reynolds Numbers
,”
Chem. Eng. Sci.
,
56
(
19
), pp.
5545
5554
.
17.
Frank
,
K.
, and
Mark
,
S. B.
, 1986,
Principles of Heat Transfer
, 4th ed.,
Harper & Row Publishers, Inc.
,
New York
.
18.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
311
.
19.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1973, “
The Prediction of Low-Reynolds-Number Phenomena With Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
.
20.
Zhang
,
L. Z.
, 2007, “
Heat and Mass Transfer in a Cross-Flow Membrane-Based Enthalpy Exchanger Under Naturally Formed Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
50
(1-2), pp.
151
162
.
21.
Patankar
,
S. V.
,
Sparrow
,
E. M.
, and
Ivanovic
,
M.
, 1978, “
Thermal Interaction Among the Confining Walls of a Turbulent Recirculating Flow
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
269
274
.
22.
Niu
,
J. L.
, and
Zhang
,
L. Z.
, 2002, “
Heat Transfer and Fraction Coefficients in Corrugated Ducts Confined by Sinusoidal and Arc Curves
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
571
578
.
23.
Favre
,
E.
, 2003, “
Temperature Polarization in Pervaporation
,”
Desalination
,
154
(
2
), pp.
129
138
.
24.
Patil
,
K. R.
,
Tripathi
,
A. D.
,
Pathak
,
G.
, and
Katti
,
S. S.
, 1990, “
Thermodynamic Properties of Aqueous Electrolyte Solutions. 1. Vapor Pressure of Aqueous Solutions of LiCl, LiBr, and LiI
,”
J. Chem. Eng. Data
,
35
(
2
), pp.
166
168
.
25.
Conde
,
M. R.
, 2004, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Heat Mass Transfer
,
43
, pp.
367
382
.
26.
Pollard
,
A.
, and
Siu
,
A. L. W.
, 1982, “
The Calculation of Some Laminar Flows Using Various Discretisation Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
35
(
3
), pp.
293
313
.
27.
Zhang
,
L. Z.
, and
Huang
,
S. M.
, 2011, “
Coupled Heat and Mass Transfer in a Counter Flow Hollow Fiber Membrane Module for Air Humidification
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1055
1063
.
You do not currently have access to this content.