A combined experimental and numerical investigation of the heat transfer characteristics within arrays of impinging jets with rib-roughened surfaces is presented. Two configurations are considered: One with an inline arrangement of jets and ribs oriented perpendicular to the direction of cross-flow and one with a staggered arrangement of jets and broken ribs aligned with the direction of cross-flow. For both cases, the jet Reynolds number is 35,000, the separation distance measures H/D = 3, the spent air is routed through one exit contributing to the maximum cross-flow condition, and the rib height and width is both 1 D. The experiments are carried out in perspex models using the transient liquid crystal method. Local jet temperatures are measured at several positions on the impingement plate to account for an exact evaluation of the heat transfer coefficient. In addition to the measurements, a numerical analysis using the commercial CFD software package ANSYSCFX is conducted. Heat transfer predictions are compared with those obtained from experiments with regards to local distributions as well as averaged quantities. A good overall agreement is found but discrepancies for local values need to be accepted. The present investigation also emphasizes that configurations including rib roughness elements should be compared based on the amount of transferred heat flux in order to account for the area enlarging effect. This allows a correct evaluation of the thermal performance.

References

1.
Schulz
,
A.
, 2001, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N.Y. Acad. Sci.
,
934
(1), pp.
135
146
.
2.
Florschuetz
,
L. W.
,
Truman
,
C.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME Trans. J. Heat Transfer
,
103
, pp.
337
342
.
3.
Martin
,
H.
, 1977,
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
(Advances in Heat Transfer), Vol. 13, Academic Press
,
New York
, pp.
1
60
.
4.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1989, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Heat Transfer
,
2
(
2
), pp.
157
197
. Available at: http://www.dl.begellhouse.com/journals/5756967540dd1b03,269acad40eb7da69,0b415dbf7639edd8.html
5.
Han
,
B.
, and
Goldstein
,
R. J.
, 2001, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
6.
Viskanta
,
R.
, 1993, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
7.
Weigand
,
B.
, and
Spring
,
S.
, 2011, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
8.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME Trans. J. Heat Transfer
,
101
, pp.
526
531
.
9.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME Trans. J. Heat Transfer
,
102
, pp.
132
137
.
10.
Obot
,
N. T.
, and
Trabold
,
T. A.
, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME Trans. J. Heat Transfer
,
109
, pp.
872
879
.
11.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
, 2010, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME Trans. J. Heat Transfer
,
132
(
9
), p.
092201
.
12.
Annerfeldt
,
M.
,
Persson
,
L.
, and
Torisson
,
T.
, 2001, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,”
Proceedings of ASME Turboe Expo
2001,
New Orleans, LA
, Jun.
4
7
, Paper No. 2001-GT-0149.
13.
Trabold
,
T. A.
, and
Obot
,
N.
T, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets, Part II: Effects of Crossflow in the Presence of Roughness Elements
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition
,
Anaheim, CA
, May 31–Jun. 4, Paper No. 87-GT-200.
14.
Chang
,
H.
,
Zhang
,
D.
, and
Huang
,
T.
, 1997, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
, Jun.
2
5
, Paper No. 97-GT-331.
15.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
, 1998, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Effect of Geometric Parameters
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm
,
Sweden
, Jun.
2
5
, Paper No. 98-GT-208.
16.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
, 2000, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jets: Correlation
,”
Proceedings of ASME Turbo Expo 2000
,
Munich
,
Germany
, May
8
11
, Paper No. 2000-GT-220.
17.
Andrews
,
G.
, Abdul
Hussain
,
R.
, and
Mkpadi
,
M.
, 2003, “
Enhanced Impingement Heat Transfer: Comparison of Co-Flow and Cross-Flow With Rib Turbulators
,”
Proceedings of IGTC2003
, Paper No. IGTC2003 Tokyo TS-075.
18.
Andrews
,
G.
,
Hussain
,
R.
, and
Mkpadi
,
M.
, 2006, “
Enhanced Impingement Heat Transfer: The Influence of Impingement x/d for Interrupted Rib Obstacles (Rectangular Pin Fins)
,”
J. Turbomach.
,
128
, pp.
321
331
.
19.
Nam
,
Y.
,
Rhee
,
D.
, and
Cho
,
H.
, 2003, “
Heat Transfer in Impingement/Effusion Cooling System With Rib Turbulators
,”
Proceedings of the International Gas Turbine Congress 2003 Tokyo
, Nov.
2
7
, Paper No. IGTC2003 Tokyo TS-076.
20.
Son
,
C.
,
Ireland
,
P.
, and
Gillespie
,
D.
, 2005, “
The Effect of Roughness Element Fillet Radii on the Heat Transfer Enhancement in an Impingement Cooling System
,”
Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land
,
Sea and Air
,
Reno-Tahoe, NV
, Jun.
6
9
, Paper No. GT2005-68186.
21.
Son
,
C.
,
Dailey
,
G.
,
Ireland
,
P.
, and
Gillespie
,
D.
, 2005, “
An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System
,”
Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea and Air
,
Reno-Tahoe, NV
, Jun.
6
9
, Paper No. GT2005-68504.
22.
Yan
,
W.
,
Liu
,
H.
,
Soong
,
C.
, and
Yang
,
W.
, 2005, “
Experimental Study of Impinging Heat Transfer Along Rib-Roughened Walls by Using Transient Liquid Crystal Technique
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2420
2428
.
23.
Yan
,
W.
, and
Mei
,
S.
, 2006, “
Measurement of Detailed Heat Transfer Along Rib-Roughened Surface Under Arrays of Impinging Elliptic Jets
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
159
170
.
24.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME Trans. J. Heat Transfer
,
127
, pp.
544
552
.
25.
Coussirat
,
M.
,
Van Beeck
,
J.
,
Mestres
,
M.
,
Egusguiza
,
M.
,
Buchlin
,
J.-M.
, and
Escaler
,
X.
, 2005, “
Computational Fluid Dynamics Modeling of Impinging Gas-Jet Systems: I. Assessment of Eddy Viscosity Models
,”
ASME J. Fluids Eng.
,
127
, pp.
691
703
.
26.
Spring
,
S.
, and
Weigand
,
B.
, 2010, “
Jet Impingement Heat Transfer
,”
Internal Cooling in Turbomachinery (VKI Lecture Series 2010–05)
,
von Karman Institute for Fluid Dynamics, Rhode-St-Genèse
,
Belgium
.
27.
Jia
,
R.
,
Rokni
,
M.
, and
Sunden
,
B.
, 2003, “
Numerical Investigation of Impingement Cooling in Ribbed Ducts Due to Jet Arrays
,”
J. Enhanced Heat Transfer
,
10
, pp.
243
256
.
28.
Xing
,
Y.
, and
Weigand
,
B.
, 2010, “
Experimental Investigation on Staggered Impingement Heat Transfer on a Rib Roughened Plate With Different Crossflow Schemes
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, GT2010
,
Glasgow, UK
, Jun.
14
18
, Paper No. GT2010-22043.
29.
Spring
,
S.
,
Lauffer
,
D.
,
Weigand
,
B.
, and
Hase
,
M.
, 2010, “
Experimental and Numerical Investigation of Impingement Cooling in a Combustor Liner Heat Shield
,”
J. Turbomach.
,
132
(
1
), p.
011003
.
30.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
, 2007, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng.
, Part A,
221
(
6
), pp.
793
801
.
31.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
32.
Wagner
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
, 2004, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,”
Proceedings of ASME Turbo Expo 2004
,
Power for Land, Sea, and Air, Vienna
,
Austria
, Jun.
14
17
.
33.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
, 2004,
Corrective Heat and Mass Transfer
, Vol.
4
,
McGraw-Hill
,
New York
.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Mech. Eng.
,
75
, pp.
3
8
. Available at: http://www.mendeley.com/research/describing-uncertainties-in-singlesample-experiments
35.
Yan
,
Y.
, and
Owen
,
J. M.
, 2002. “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
, pp.
29
35
.
36.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2005, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
, pp.
256
263
.
37.
Menter
,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
38.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, p.
0708001
.
39.
Roache
,
P. J.
, 1994, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
, pp.
405
413
.
40.
Cooper
,
D.
,
Jackson
,
D.
,
Launder
,
B.
, and
Liao
,
G.
, 1993, “
Impinging Jet Studies for Turbulence Model Assessment, Part I: Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2675
2684
.
41.
Patankar
,
S. V.
,
Pratab
,
V. S.
, and
Spalding
,
D. B.
, 1975, “
Prediction of Turbulent Flow in Curved Pipes
,”
J. Fluid Mech.
,
67
(
3
), pp.
583
595
.
42.
Pope
,
S. B.
, 1978, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
.
43.
Bernard
,
A.
,
Brizzi
,
L.-E.
, and
Bousgarbies
,
J.-L.
, 1999, “
Study of Several Jets Impinging on a Plane Wall: Visualizations and Laser Velocimetry Investigations
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
808
812
.
44.
Chung
,
Y.
,
Luo
,
K.
, and
Sandham
,
N.
, 2002, “
Numerical Study of Momentum and Heat Transfer in Unsteady Impinging Jets
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
592
600
.
45.
Coletti
,
F.
, and
Arts
,
T.
, 2010, “
Experimental Study of Conjugate Heat Transfer in a Rib-Roughened Trailing Edge Cooling Channel With Crossing-Jets
,”
Internal Cooling in Turbomachinery (VKI Lecture Series 2010–05)
,
von Karman Institute for Fluid Dynamics, Rhode-St-Genèse
,
Belgium
.
You do not currently have access to this content.