Analytical solutions are presented for velocity and temperature distributions of laminar fully developed flow of Newtonian, constant property fluids in micro/minichannels of hyperelliptical and regular polygonal cross sections. The considered geometries cover several common shapes such as ellipse, rectangle, rectangle with round corners, rhombus, star-shape, and all regular polygons. The analysis is carried out under the conditions of constant axial wall heat flux with uniform peripheral heat flux at a given cross section. A linear least squares point matching technique is used to minimize the residual between the actual and the predicted values on the boundary of the channel. Hydrodynamic and thermal characteristics of the flow are derived; these include pressure drop and local and average Nusselt numbers. The proposed results are successfully verified with existing analytical and numerical solutions from the literature for a variety of cross sections. The present study provides analytical-based compact solutions for velocity and temperature fields that are essential for basic designs, parametric studies, and optimization analyses required for many thermofluidic applications.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
8
), pp.
213
213
.
2.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 1998, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
579
612
.
3.
Lee
,
J.
, and
Kjeang
,
E.
, 2010, “
A Perspective on Microfluidic Biofuel Cells
,”
Biomicrofluidics
,
4
(
4
), p.
041301
.
4.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
, 2008, “
A Microfluidic Fuel Cell With Flow-Through Porous Electrodes
,”
J. Am. Chem. Soc.
,
130
(
12
), pp.
4000
4006
.
5.
Gunther
,
A.
,
Khan
,
S. A.
,
Thalmann
,
M.
,
Trachsel
,
F.
, and
Jensen
,
K. F.
, 2004, “
Transport and Reaction in Microscale Segmented Gas-Liquid Flow
,”
Lab Chip
,
4
(
4
), pp.
278
286
.
6.
Effenhauser
,
C. S.
,
Manz
,
A.
, and
Widmer
,
H. M.
, 1993, “
Glass Chips for High-Speed Capillary Electrophoresis Separations With Submicrometer Plate Heights
,”
Anal. Chem.
,
65
(19), pp.
2637
2642
.
7.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comprehensive Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophy. Eng.
,
5
, pp.
293
311
.
8.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2009, “
Analytical Determination of Viscous Permeability of Fibrous Porous Media
,”
Int. J. Heat Mass Transfer
,
52
(
9-10
), pp.
2407
2414
.
9.
Tamayol
,
A.
,
Kholsa
,
A.
,
Gray
,
B.
, and
Bahrami
,
M.
, 2010, “
Pressure Drop in Micro-Channels filled With Porous Media
,”
ICNMM2010
,
Montreal, Canada
.
10.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J.
, 1989, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators, A
,
22
(
1–3
), pp.
431
434
.
11.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow In Micro-Channels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
12.
Cao
,
B.
,
Chen
,
G. W.
, and
Yuan
,
Q.
, 2005, “
Fully Developed Laminar Flow and Heat Transfer in Smooth Trapezoidal Microchannel
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1211
1220
.
13.
Gao
,
P.
,
Person
,
S. L.
, and
Favre-Marinet
,
M.
, 2002, “
Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels
,”
Int. J. Therm. Sci.
,
41
(
11
), pp.
1017
1027
.
14.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
, 2009, “
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041202
.
15.
Bahrami
,
M.
,
Tamayol
,
A.
, and
Taheri
,
P.
, 2009, “
Slip-Flow Pressure Drop in Microchannels of General Cross Section
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031201
.
16.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1036
1044
.
17.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
, 2011, “
Viscous Flow in Variable Cross-Section Microchannels of Arbitrary Shapes
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3970
3978
.
18.
Sadeghi
,
E.
,
Bahrami
,
M.
, and
Djilali
,
N.
, 2010, “
Estimation of Nusselt Number in Microchannels of Arbitrary Cross Section With Constant Axial Heat Flux
,”
Heat Transfer Eng.
,
31
(
8
), pp.
666
674
.
19.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
20.
Sparrow
,
E. M.
, and
Haji-Sheikh
,
A.
, 1965, “
Laminar Heat Transfer and Pressure Drop in Isosceles Triangular, Right Triangular and Circular Sector Ducts
,”
ASME J. Heat Transfer
,
87
, pp.
426
427
.
21.
Sparrow
,
E. M.
,
Loeffler
,
A. L.
, and
Hubbard
,
H. A.
, 1961, “
Heat Transfer to Longitudinal Laminar Flow Between Cylinders
,”
ASME J. Heat Transfer
,
83
, pp.
415
422
.
22.
Tyagi
,
V. P.
, 1966, “
Laminar Forced Convection of a Dissipative Fluid in a Channel
,”
ASME J. Heat Transfer
,
46
, pp.
161
169
.
23.
Shah
,
R. K.
, 1975, “
Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
18
(
7-8
), pp.
849
862
.
24.
Richardson
,
S. M.
, 1980, “
Leveque Solution for Flow in an Elliptical Duct
,”
Lett. Heat Mass Transfer
,
7
(
5
), pp.
353
362
.
25.
Abdel-Wahed
,
R. M.
, and
Attia
,
A. E.
, 1984, “
Fully Developed Laminar Flow and Heat Transfer in an Arbitrarily Shaped Triangular Duct
,”
Heat Mass Transfer
,
18
(
2
), pp.
83
88
.
26.
Maia
,
C. R. M.
,
Aparecido
,
J. B.
, and
Milanez
,
L. F.
, 2006, “
Heat Transfer in Laminar Flow of Non-Newtonian Fluids in Ducts of Elliptical Section
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1066
1072
.
27.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2010, “
Laminar Flow in Microchannels With Noncircular Cross Section
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111201
.
28.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
, 2008, “
Fluid Flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
535
544
.
29.
Tamayol
,
A.
, and
Hooman
,
K.
, 2011, “
Slip-Flow in Microchannels of Non-Circular Cross Sections
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091202
.
30.
Jaklič
,
A.
,
Leonardis
,
A.
, and
Solina
,
F.
, 2000,
Segmentation and Recovery of Superquadrics
,
Springer
,
New York
.
31.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier Science & Technology
,
Oxford
.
32.
Gad-El-Hak
,
M.
, 1999, “
The Fluid Mechanics of Microdevices: The Freeman Scholar Lecture
,”
J. Fluid Eng.
,
121
(
1
), pp.
7
33
.
33.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw-Hill Higher Education
,
Boston
.
34.
Farlow
,
S. J.
, 1993,
Partial Differential Equations for Scientists and Engineer
,
Dover Publication, Inc.
,
New York
.
35.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2010, “
Parallel Flow Through Ordered Fibers: An Analytical Approach
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
114502
.
36.
Sparrow
,
E. M.
, and
Loeffler
,
A. L.
, 1959, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
,
5
, pp.
325
330
.
37.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
38.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
, 2005,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
, p.
118
.
39.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows
,
Springer
,
New York
.
40.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.