Abstract

A Chebyshev collocation spectral method (CSM) is presented to solve transient coupled radiative and conductive heat transfer in three-dimensional absorbing, emitting, and scattering medium in Cartesian coordinates. The walls of the enclosures are considered to be opaque, diffuse, and gray and have specified temperature boundary conditions. The CSM is adopted to solve both the radiative transfer equation (RTE) and energy conservation equation in spatial domain, and the discrete ordinates method (DOM) is used for angular discretization of RTE. The exponential convergence characteristic of the CSM for transient coupled radiative and conductive heat transfer is studied. The results using the CSM show very satisfactory calculations comparing with available results in the literature. Based on this method, the effects of various parameters, such as the scattering albedo, the conduction–radiation parameter, the wall emissivity, and the optical thickness, are analyzed.

References

1.
Viskanta
,
R.
, and
Grosh
,
R. J.
, 1962, “
Heat Transfer by Simultaneous Conduction and Radiation in an Absorbing Medium
,”
ASME Trans. J. Heat Transfer
,
84
(
1
), pp.
63
72
.
2.
Siegel
,
R.
, 1998, “
Transient Thermal Effects of Radiant Energy in Translucent Materials
,”
ASME Trans J. Heat Transfer
,
120
(
1
), pp.
4
23
.
3.
Blobner
,
J.
,
BiaŁecki
,
R. A.
, and
Kuhn
,
G.
, 1999, “
Transient Non-Linear Heat Conduction–Radiation Problems—A Boundary Element Formulation
,”
Int. J. Numer. Methods Eng.
,
46
(
11
), pp.
1865
1882
.
4.
Lazard
,
M.
,
André
,
S.
, and
Maillet
,
D.
, 2001, “
Transient Coupled Radiative-Conductive Heat Transfer in a Gray Planar Medium With Anisotropic Scattering
,”
J. Quant. Spectrosc. Radiat. Transf.
,
69
(
1
), pp.
23
33
.
5.
Muresan
,
C.
,
Vaillon
,
R.
,
Menezo
,
C.
, and
Morlot
,
R.
, 2004, “
Discrete Ordinates Solution of Coupled Conductive Radiative Heat Transfer in a Two-Layer Slab With Fresnel Interfaces Subject to Diffuse and Obliquely Collimated Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
,
84
(
4
), pp.
551
562
.
6.
David
,
L.
,
Nacer
,
B.
,
Pascal
,
B.
, and
Gérard
,
J.
, 2006, “
Transient Radiative and Conductive Heat Transfer in Non-Gray Semitransparent Two-Dimensional Media With Mixed Boundary Conditions
,”
Heat Mass Transfer
,
42
(
4
), pp.
322
337
.
7.
Asllanaj
,
F.
,
Brige
,
X.
, and
Jeandel
,
G.
, 2007, “
Transient Combined Radiation and Conduction in a One-Dimensional Non-Gray Participating Medium With Anisotropic Optical Properties Subjected to Radiative Flux at the Boundaries
,”
J. Quant. Spectrosc. Radiat. Transf.
,
107
(
1
), pp.
17
29
.
8.
Asllanaj
,
F.
,
Feldheim
,
V.
, and
Lybaert
,
P.
, 2007, “
Solution of Radiative Heat Transfer in 2-D Geometries by a Modified Finite-Volume Method Based on a Cell Vertex Scheme Using Unstructured Triangular Meshes
,”
Numer. Heat Transfer, Part B
,
51
(
2
), pp.
97
119
.
9.
Asllanaj
,
F.
,
Parent
,
G.
, and
Jeandel
,
G.
, 2007, “
Transient Radiation and Conduction Heat Transfer in a Gray Absorbing-Emitting Medium Applied on Two-Dimensional Complex-Shaped Domains
,”
Numer. Heat Transfer, Part B
,
52
(
2
), pp.
179
200
.
10.
Kaemmerlen
,
A.
,
Asllanaj
,
F.
,
Sallée
,
H.
,
Baillis
,
D.
, and
Jeandel
,
G.
, 2010, “
Transient Modeling of Combined Conduction and Radiation in Wood Fibre Insulation and Comparison With Experimental Data
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2169
2176
.
11.
Mondal
,
B.
, and
Mishra
,
S. C.
, 2009, “
Analysis of 3-D Conduction-Radiation Heat Transfer Using the Lattice Boltzmann Method
,”
J. Thermophys. Heat Transfer
,
23
(
1
), pp.
210
215
.
12.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
, 2010, “
Inverse Analysis Applied to Retrieval of Parameters and Reconstruction of Temperature Field in a Transient Conduction-Radiation Heat Transfer Problem Involving Mixed Boundary Conditions
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
52
57
.
13.
Mishra
,
S. C.
,
Muthukumaran
,
R.
, and
Maruyama
,
S.
, 2011, “
The Finite Volume Method Approach to the Collapsed Dimension Method in Analyzing Steady/Transient Radiative Transfer Problems in Participating Media
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
291
297
.
14.
Henshall
,
P.
, and
Palmer
,
P.
, 2008, “
A Leapfrog Algorithm for Coupled Conductive and Radiative Transient Heat Transfer in Participating Media
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
388
398
.
15.
Yi
,
H. L.
,
Xie
,
M.
, and
Tan
,
H. P.
, 2008, “
Transient Coupled Heat Transfer in an Anisotropic Scattering Composite Slab With Semitransparent Surfaces
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5918
5930
.
16.
Yi
,
H. L.
,
Zhang
,
H. C.
, and
Tan
,
H. P.
, 2009, “
Transient Radiation and Conduction Heat Transfer Inside a Plane-Parallel Participating Gray Medium With Boundaries Having Different Reflecting Characteristics
,”
J. Quant. Spectrosc. Radiat. Transf.
,
110
(
18
), pp.
1978
1992
.
17.
Luo
,
J. F.
, and
Shen
,
X.
, 2009, “
Numerical Method of the Ray Tracing-Node Analyzing Method for Solving 2-D Transient Coupled Heat Transfer in a Rectangular Semitransparent Medium
,”
Numer. Heat Transfer, Part A
,
55
(
5
), pp.
465
486
.
18.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
, 2011, “
Analysis of Two-Dimensional Transient Conduction-Radiation Problems in an Anisotropically Scattering Participating Enclosure Using the Lattice Boltzmann Method and the Control Volume Finite Element Method
,”
Comput. Phys. Commun.
,
182
(
7
), pp.
1402
1413
.
19.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
, 2011, “
Parametric Study of Simultaneous Transient Conduction and Radiation in a Two-Dimensional Participating Medium
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4006
4020
.
20.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2007, “
Solution of Radiative Heat Transfer in Graded Index Media by Least Square Spectral Element Method
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2634
2642
.
21.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 2006,
Spectral Methods: Fundamentals in Single Domains
,
Springer
,
Berlin
.
22.
Boyd
,
J. P.
, 2001,
Chebyshev and Fourier Spectral Methods
,
Dover Publications
,
New York
.
23.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
,
Springer
,
Berlin
.
24.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 2007,
Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics
,
Springer
,
Berlin
.
25.
Graham
,
N.
,
Quandt
,
M.
, and
Weigel
,
H.
, 2009,
Spectral Methods in Quantum Field Theory
,
Springer-Verlag
,
Berlin
.
26.
Shan
,
X. W.
,
Montgomery
,
D.
, and
Chen
,
H. D.
, 1991, “
Nonlinear Magnetohydrodynamics by Galerkin-Method Computation
,”
Phys. Rev. A
,
44
(
10
), pp.
6800
6818
.
27.
Orszag
,
S. A.
, 1974, “
Fourier Series on Spheres
,”
Mon. Weather Rev.
,
102
(
1
), pp.
56
75
.
28.
Worcester
,
P. F.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Munk
,
W. H.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Spindel
,
R. C.
,
Colosi
,
J. A.
,
Metzger
,
K.
,
Birdsall
,
T. G.
, and
Baggeroer
,
A. B.
, 1999, “
A Test of Basin-Scale Acoustic Thermometry Using a Large-Aperture Vertical Array at 3250-km Range in the Eastern North Pacific Ocean
,”
J. Acoust. Soc. Am.
,
105
(
6
), pp.
3185
3201
.
29.
Zenouzi
,
M.
, and
Yener
,
Y.
, 1992, “
Simultaneous Radiation and Natural Convection in Vertical Slots
,” Developments in Radiative Heat Transfer, HTD-Vol. 203, pp.
179
186
.
30.
Kuo
,
D. C.
,
Morales
,
J. C.
, and
Ball
,
K. S.
, 1999, “
Combined Natural Convection and Volumetric Radiation in a Horizontal Annulus: Spectral and Finite Volume Predictions
,”
ASME Trans. J. Heat Transfer
,
121
(
3
), pp.
610
615
.
31.
De Oliveira
,
J. V. P.
,
Cardona
,
A. V.
,
Vilhena
,
M. T.
, and
Barros
,
R. C.
, 2002, “
A Semi-Analytical Numerical Method for Time-Dependent Radiative Transfer Problems in Slab Geometry With Coherent Isotropic Scattering
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
(
1
), pp.
55
62
.
32.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2007, “
Spectral Element Approach for Coupled Radiative and Conductive Heat Transfer in Semitransparent Medium
,”
ASME Trans. J. Heat Transfer
,
129
(
10
), pp.
1417
1424
.
33.
Li
,
B. W.
,
Sun
,
Y. S.
, and
Yu
,
Y.
, 2008, “
Iterative and Direct Chebyshev Collocation Spectral Methods for One-Dimensional Radiative Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5887
5894
.
34.
Sun
,
Y. S.
, and
Li
,
B. W.
, 2009, “
Chebyshev Collocation Spectral Method for One-Dimensional Radiative Heat Transfer in Graded Index
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
691
698
.
35.
Li
,
B. W.
,
Tian
,
S. A.
,
Sun
,
Y. S.
, and
Hu
,
Z. M.
, 2010, “
Schur-Decomposition for 3D Matrix Equations and Its Application in Solving Radiative Discrete Ordinates Equations Discretized by Chebyshev Collocation Spectral Method
,”
J. Comput. Phys.
,
229
(
4
), pp.
1198
1212
.
36.
Li
,
B. W.
,
Sun
,
Y. S.
, and
Zhang
,
D. W.
, 2009, “
Chebyshev Collocation Spectral Methods for Coupled Radiation and Conduction in a Concentric Spherical Participating Medium
,”
ASME Trans. J. Heat Transfer
,
131
(
6
), p.
062701
.
37.
Sun
,
Y.-S.
, and
Li
,
B.-W.
, 2010, “
Spectral Collocation Method for Transient Conduction-Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
24
(
4
), pp.
823
832
.
38.
Chen
,
H. L.
,
Su
,
Y. H.
, and
Shizgal
,
B. D.
, 2000, “
A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates
,”
J. Comput. Phys.
,
160
(
2
), pp.
453
469
.
You do not currently have access to this content.