Anomalous enhancements in the specific heat capacity values of nanomaterials were measured in this study. Silica nanoparticles (∼2–20 nm) were dispersed into eutectic of lithium carbonate and potassium carbonate (62:38 by molar ratio) at 1.5% mass concentration. The specific heat capacity measurements were performed using a differential scanning calorimeter (DSC). The specific heat capacity of the silica nanocomposite (solid phase) was enhanced by 38–54% and the specific heat of the silica nanofluid (liquid phase) was enhanced by 118–124% over that of the pure eutectic. Electron microscopy of the samples shows that the nanoparticles induce phase change (forms a higher density “compressed phase”) within the solvent material. Hence, a new model is proposed to account for the contribution of the compressed phase to the total specific heat capacity of the nanomaterials. The proposed model is found to be in good agreement with the experimental data. These results have wide ranging implications, such as for the development of efficient thermal storage systems that can enable significant reduction in the cost of solar thermal power.

References

1.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.10.1115/1.1565087
2.
Araki
,
N.
,
Matsuura
,
M.
,
Makino
,
A.
,
Hirata
,
T.
, and
Kato
,
Y.
,
1988
, “
Measurement of Thermophysical Properties of Molten Salts: Mixtures of Alkaline Carbonate Salts
,”
Int. J. Thermophys.
,
9
(
6
), pp.
1071
1080
.10.1007/BF01133274
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
4.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
5.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
,
91
(
7
), pp.
4568
4572
.10.1063/1.1454184
6.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
,
94
(
8
), pp.
4967
4971
.10.1063/1.1613374
7.
Hong
,
T.-K.
,
Yang
,
H.-S.
, and
Choi
,
C.
,
2005
, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
,
97
(
6
), p.
064311
.10.1063/1.1861145
8.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
(
8
), p.
084314
.10.1063/1.2191571
9.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.10.1016/S0017-9310(01)00175-2
10.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.10.1063/1.1756684
11.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.10.1115/1.2188509
12.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.10.1007/s11051-007-9352-1
13.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1431
1438
.10.1016/j.ijheatmasstransfer.2007.10.017
14.
Zhou
,
S.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based AlO Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.10.1063/1.2890431
15.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.10.1115/1.3090813
16.
Nelson
,
I. C.
,
Banerjee
,
D.
, and
Ponnappan
,
R.
,
2009
, “
Flow Loop Experiments Using Polyalphaolefin Nanofluids
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
752
761
.10.2514/1.31033
17.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.10.1115/1.4002600
18.
Shin
,
D.
,
Jo
,
B.
,
Kwak
,
H.
, and
Banerjee
,
D.
,
2010
, “
Investigation of High Temperature Nanofluids for Solar Thermal Power Conversion and Storage Applications
,”
Proceedings of the 14th International Heat Transfer Conference (IHTC14)
,
Washington
,
DC
,
ASME
, Paper No. IHTC14-23296.10.1115/IHTC14-23296
19.
Janz
,
G.
,
Allen
,
C.
,
Bansal
,
N.
,
Murphy
,
R.
, and
Tomkins
,
R.
,
1979
,
Physical Properties Data Compilations Relevant to Energy Storage
,
U. S. Dept. of Commerce, National Bureau of Standards
,
Washington, DC
.
20.
Shin
,
D.
, “
Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications
,”
Ph.D. thesis
,
Texas A&M University
,
College Station, TX
.
21.
Oh
,
S. H.
,
Kauffman
,
Y.
,
Scheu
,
C.
,
Kaplan
,
W. D.
, and
Ruhle
,
M.
,
2005
, “
Ordered Liquid Aluminum at the Interface With Sapphire
,”
Science
,
310
, pp.
661
663
.10.1126/science.1118611
22.
Li
,
L.
,
Zhang
,
Y.
,
Ma
,
H.
, and
Yang
,
M.
,
2010
, “
Molecular Dynamics Simulation of Effect of Liquid Layering Around the Nanoparticle on the Enhanced Thermal Conductivity of Nanofluids
,”
J. Nanopart. Res.,
12
(
3
), pp.
811
821
.10.1007/s11051-009-9728-5
23.
Jo
,
B.
, and
Banerjee
,
D.
,
2011
, “
Interfacial Thermal Resistance Between a Carbon Nanoparticle and Molten Salt Eutectic: Effect of Material Properties, Particle Shapes and Sizes
,”
ASME
/JSME
8th Thermal Engineering Joint Conference
,
Honolulu, HI
, Mar. 13–17, Paper No. AJTEC2011-44373.10.1115/AJTEC2011-44373
24.
Yu
,
C.-J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
,
2000
, “
Molecular Layering in a Liquid on a Solid Substrate: An X-ray Reflectivity Study
,”
Physica B
,
283
, pp.
27
31
.10.1016/S0921-4526(99)01885-2
25.
Turanov
,
A. N.
, and
Tomachev
,
Y. V.
,
2009
, “
Heat and Mass Transport in Aqueous Silica Nanofluids
,”
Heat Mass Transfer
,
45
, pp.
1583
1588
.10.1007/s00231-009-0533-6
26.
Gerardi
,
C.
,
Cory
,
D.
,
Bungiorno
,
J.
,
Hu
,
L.-W.
, and
McKrell
,
T.
,
2009
, “
Nuclear Magnetic Resonance-Based Study of Ordered Layering on the Surface of Alumina Nanoparticles in Water
,”
Appl. Phys. Lett.
,
95
, p.
253104
.10.1063/1.3276551
27.
Malik
,
D. A.
,
2010
, “
Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for Use in Concentrating Solar Power Plants
,”
M.S. thesis
,
Texas A&M University
, College Station, TX.
You do not currently have access to this content.