Developing and fully developed laminar flows of power law fluid with forced convection heat transfer through a concentric annular duct are numerically analyzed. The results are presented for the following ranges: 0.2 ≤ n ≤ 1.8 (power law index), 10 ≤ Re ≤ 1000 (Reynolds number), and r* = 0.2, 0.5, 0.8 (aspect ratio). In addition, the influences of different thermal boundary conditions on the thermal performance are delineated. The effects of rheological parameter on the developing length, friction factor, temperature distribution, velocity profile, and Nusselt number along the channel length are investigated. The results are compared with earlier research and excellent agreement was observed.
Issue Section:
Forced Convection
References
1.
Fredrickson
, A. G.
, and Bird
, R. B.
, 1958
, “Non-Newtonian Flow in Annuli
,” Indust. Eng. Chem.
, 50
(3
), pp. 347
–352
.10.1021/ie50579a0352.
Fredrickson
, A. G.
, and Bird
, R. B.
, 1958
, “Friction Factors for Axial Non-Newtonian Annular Flow
,” Indust. Eng. Chem.
, 50
(10
), pp. 1599
–1600
.10.1021/ie50586a0503.
Hanks
, R. W.
, and Larsen
, K. M.
, 1979
, “Flow of Power-Law Non-Newtonian Fluids in Concentric Annuli
,” Indust. Eng. Chem. Fundamentals
, 18
(1
), pp. 33
–35
.10.1021/i160069a0084.
Prasanth
, N.
, and Shenoy
, U. V.
, 1992
, “Poiseuille Flow of a Power-Law Fluid Between Coaxial Cylinders
,” J. Appl. Polym. Sci.
, 46
(7
), pp. 1189
–1194
.10.1002/app.1992.0704607085.
David
, J.
, and Filip
, P.
, 1996
, “Explicit Pressure Drop-Flow Rate Relation for Laminar Axial Flow of Power-Law Fluids in Concentric Annuli
,” J. Petrol. Sci. Eng.
, 16
(4
), pp. 203
–208
.10.1016/S0920-4105(96)00039-36.
Kozicki
, W.
, Chou
, C. H.
, and Tiu
, C.
, 1966
, “Non-Newtonian Flow in Ducts of Arbitrary Cross-Sectional Area
,” Chem. Eng. Sci.
, 21
(8
), pp. 665
–679
.10.1016/0009-2509(66)80016-77.
Tuoc
, T. K.
, and Mcgiven
, J. M.
, 1994
, “Laminar Flow of Non-Newtonian Fluids in Annuli
,” Chem. Eng. Res. Des.
, 72
(A5
), pp. 669
–676
.8.
Liu
, J.
, and Shah
, V. L.
, 1975
, “Numerical Solution of a Casson Fluid Flow in the Entrance of Annular Tubes
,” Appl. Sci. Res.
, 31
, pp. 213
–222
.10.1007/BF021161599.
Round
, G. F.
, and Yu
, S.
, 1993
, “Entrance Laminar Flows of Viscoplastic Fluids in Concentric Annuli
,” Can. J. Chem. Eng.
, 71
, pp. 642
–645
.10.1002/cjce.545071041710.
Maia
, M. C. A.
, and Gasparetto
, C. A.
, 2003
, “A Numerical Solution for the Entrance Region of Non-Newtonian Flow in Annuli
,” Brazilian J. Chem. Eng.
, 20
(2
), pp. 201
–211
.10.1590/S0104-6632200300020001411.
Mishra
, I. M.
, and Mishra
, P.
, 1977
, “Linearized Approach for Predicting Loss Coefficients in Entrance Region Flows of Purely Viscous Non-Newtonian Fluids in an Annular Duct
,” Chem. Eng. J.
, 14
, pp. 41
–47
.10.1016/0300-9467(77)80021-X12.
Coelho
, P. M.
, Pinho
, F. T.
, and Oliveira
, P. J.
, 2003
, “Thermal Entry Flow for a Viscoelastic Fluid: The Graetz Problem for PTT Model
,” Int. J. Heat Mass Tran.
, 46
(20
), pp. 3865
–3880
.10.1016/S0017-9310(03)00179-013.
Oliveira
, P. J.
, Coelho
, P. M.
, and Pinho
, F. T.
, 2004
, “The Graetz Problem With Viscous Dissipation for FENE-P Fluids
,” J. Non Newt. Fluid. Mech.
, 121
(1
), pp. 69
–72
.10.1016/j.jnnfm.2004.04.00514.
Pinho
, F. T.
and Oliveira
, P. J.
, 2000
, “Axial Annular Flow of a Nonlinear Viscoelastic Fluid-an Analytical Solution
,” J. Non Newt. Fluid. Mech.
, 93
, pp. 325
–337
.10.1016/S0377-0257(00)00113-015.
Uzun
, I.
, and Unsal
, M.
, 1997
, “A Numerical Study of Laminar Heat Convection in Ducts of Irregular Cross-Sections
,” Int. Commun. Heat Mass Transfer
, 24
(6
), pp. 835
–848
.10.1016/S0735-1933(97)00070-516.
Lin
, C. X.
, Zhang
, P.
, and Ebadian
, M. A.
, 1997
, “Laminar Forced Convection in the Entrance Region of Helical Pipes
,” Int. J. Heat Mass Tran.
, 40
(14
), pp. 3293
–3304
.10.1016/S0017-9310(96)00381-X17.
Lin
, M. J.
, Wang
, Q. W.
, and Tao
, W. Q.
, 2000
, “Developing Laminar Flow and Heat Transfer in Annular-Sector Ducts
,” Heat Transf. Eng.
, 21
, pp. 53
–61
.10.1080/01457630027102218.
Escudier
, M. P.
, Oliveira
, P. J.
, Pinho
, F. T.
, and Smith
, S.
, 2002
, “Fully Developed Laminar Flow of Non-Newtonian Liquids Through Annuli: Comparison of Numerical Calculations With Experiments
,” Experiment. Fluid.
, 33
(1
), pp. 101
–111
.10.1007/S00348-002-0429-419.
Viana
, M. J. G.
, Nascimento
, U. C. S.
, Quaresma
, J. N. N.
, and Macedo
, E. N.
, 2001
, “Integral Transform Method for Laminar Heat Transfer Convection of Herschel–Bulkley Fluids Within Concentric Annular Ducts
,” Braz. J. Chem. Eng.
, 18
(4
), pp. 337
–358
.10.1590/S0104-6632200100040000120.
Nouar
, C.
, Benaouda-Zouaoui
, B.
, and Desaubry
, C.
, 2000
, “Laminar Mixed Convection in a Horizontal Annular Duct. Case of Thermodependent Non-Newtonian Fluid
,” Eur. J. Mechan. B
, 19
(3
), pp. 423
–452
.10.1016/S0997-7546(00)00120-521.
Nield
, D. A.
, and Kuznetsov
, A. V.
, 2005
, “Thermally Developing Forced Convection in a Channel Occupied by a Porous Medium Saturated by a Non-Newtonian Fluid
,” Int. J. Heat Mass Tran.
, 48
, pp. 1214
–1218
.10.1016/j.ijheatmasstransfer.2004.09.04022.
Manglik
, R. M.
, and Fang
, P.
, 2002
, “Thermal Processing of Viscous Non-Newtonian Fluids in Annular Ducts: Effects of Power-Law Rheology, Duct Eccentricity and Thermal Boundary Conditions
,” Int. J. Heat Mass Tran.
, 45
(4
), pp. 803
–814
.10.1016/S0017-9310(01)00186-723.
Soares
, E. J.
, Naccache
, M. F.
, and Mendes
, P. R. S.
, 2003
, “Heat Transfer to Viscoplastic Materials Flowing Axially Through Concentric Annuli
,” Int. J. Heat Fluid Flow
, 24
(5
), pp. 762
–773
.10.1016/S0142-727X(03)00066-324.
Nascimento
, U. C. S.
, Macedo
, E. N.
, and Quaresma
, J.N.N.
, 2002
, “Thermal Entry Region Analysis Through the Finite Integral Transform Technique in Laminar Flow of Bingham Fluids Within Concentric Annular Ducts
,” Int. J. Heat Mass Tran.
, 45
, pp. 923
–929
.10.1016/S0017-9310(01)00187-925.
Ait Messaoudene
, N.
, Horimek
, A.
, Nouar
, C.
, and Benaouda-Zouaoui
, B.
, 2011
, “Laminar Mixed Convection in an Eccentric Annular Horizontal Duct for a Thermodependent Non-Newtonian Fluid
,” Int. J. Heat Mass Tran.
, 54
(19–20
), pp. 4220
–4234
.10.1016/j.ijheatmasstransfer.2011.05.02226.
Davidson
, L.
, and Farhanieh
, B.
, 1992
, “CALC-BFC: A Finite-Volume Code Employing Collocated Variable Arrangement and Cartesian Velocity Components for Components for Computation of Fluid Flow and Heat Transfer in Complex Three-Dimensional Geometries
,” Rept. 92/4, Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden.27.
Kakac
, S.
, Shah
, R. K.
, Aung
, W.
, eds., 1987
, Handbook of Single-Phase Convective Heat Transfer
, Wiley, New York, Chapter 3.Copyright © 2013 by ASME
You do not currently have access to this content.