An exploratory study of two-phase physics was undertaken in a slow moving tank containing liquid. This study is under the regime of conjugate heat and mass transfer phenomena. An experiment was designed and performed to estimate the interfacial mass transfer characteristics of a slowly moving tank. The tank was swayed at varying frequencies and constant amplitude. The experiments were conducted for a range of liquid temperatures and filling levels. The experimental setup consisted of a tank partially filled with water at different temperatures, being swayed using a six degrees-of-freedom (DOF) motion actuator. The experiments were conducted for a frequency range of 0.7–1.6 Hz with constant amplitude of 0.025 m. The evaporation of liquid from the interface and the gaseous condensation was quantified by calculating the instantaneous interfacial mass transfer rate of the slow moving tank. The dependence of interfacial mass transfer rate on the liquid–vapor interfacial temperature, the fractional concentration of the evaporating liquid, the surface area of the liquid vapor interface and the filling level of the liquid was established. As sway frequency, filling levels, and liquid temperature increased, the interfacial mass transfer rate also increased. The interfacial mass transfer rate estimated for the swaying tank compared with the interfacial mass transfer rate of stationary tank shows that vibration increases the mass transfer.

References

1.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics Theory and Applications
,
Cambridge Press University
,
New York
.
2.
Lamb
,
H.
,
1932
,
Hydrodyanamics
(Cambridge Mathematical Library, 6th ed.),
Cambridge University Press
,
New York
.
3.
Abramson
,
H. N.
,
Bass
,
R. L.
,
Faltinsen
,
O. M.
, and
Olsen
,
H. A.
,
1974
, “
Liquid Slosh in LNG Carriers
,” Tenth Symposium on Naval Hydrodynamics, June 24–28, Cambridge, MA, pp.
371
388
.
4.
Rakshit
,
D.
,
Repalle
,
N.
,
Putta
,
J.
, and
Thiagarajan
,
K. P.
,
2008
, “
A Numerical Study on the Impact of Filling Level on Liquid Sloshing Pressures
,”
ASME
Paper No. 2008-57557.
5.
Maillard
,
S.
, and
Brosset
,
L.
,
2009
, “
Influence of Density Ratio Between Liquid and Gas on Sloshing Model Test Results
,”
Nineteenth International Offshore and Polar Engineering Conference
, Osaka, June 21–26, 2009.
6.
Rakshit
,
D.
,
Narayanaswamy
,
R.
,
Truong
,
T.
, and
Thiagarajan
,
K. P.
,
2010
, “
An Experimental Study on the Interface Mass Transfer Governing Thermodynamics of Stored Liquids
,”
20th National and 9th International ISHMT-ASME Heat and Mass Transfer Conference
, pp.
1443
1450
.
7.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
8.
Gradon
,
L.
, and
Selecki
,
A.
,
1977
, “
Evaporation of a Liquid Drop Immersed in Another Immiscible Liquid. The Case of σc < σd
,”
Int. J. Heat Mass Transfer
,
20
(
77
), p.
90092
.
9.
Raina
,
G. K.
, and
Wanchoo
,
R. K.
,
1984
, “
Direct Contact Heat Transfer With Phase Change: Theoretical Expression for Instantaneous Velocity of a Two-Phase Bubble
,”
Int. Commun. Heat Mass Transfer
,
11
(
84
), p.
90039
.
10.
Raina
,
G. K.
, and
Grover
,
P. D.
,
1985
, “
Direct Contact Heat Transfer With Phase Change: Theoretical Model Incorporating Sloshing Effects
,”
AIChE J.
,
31
(
3
), pp.
507
510
.
11.
Raina
,
G. K.
, and
Grover
,
P. D.
,
1988
, “
Direct Contact Heat Transfer With Change of Phase: Experimental Technique
,”
AIChE J.
,
34
(
8
), pp.
1376
1380
.
12.
Dent
,
J. C.
,
1969-1970
, “
Effect of Vibration on Condensation Heat Transfer to a Horizontal Tube
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
99
106
.
13.
Rose
,
J. W.
,
1981
, “
Dropwise Condensation Theory
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
191
194
.
14.
Rose
,
J. W.
,
1987
, “
On Interphase Matter Transfer, the Condensation Coefficient and Dropwise Condensation
,”
Proc. R. Soc. London
,
11
(
1841
), pp.
305
311
.
15.
Tolubinskiy
,
V. I.
,
Kichigin
,
A. M.
,
Povsten
,
S. G.
, and
Moskalenko
,
A. A.
,
1980
, “
Investigation of Forced-Convection Boiling by the Acoustical Method
,”
Heat Transfer—Sov. Res.
,
12
(
2
), pp.
141
146
.
16.
Antonenko
,
V. A.
,
Chistyakov
,
Yu. G.
, and
Kudritskiy
,
G. R.
,
1992
, “
Vibration-Aided Boiling Heat Transfer
,”
Heat Transfer—Sov. Res.
,
24
(
8
), pp.
1147
1151
.
17.
Nishiyama
,
K.
,
Murata
,
A.
, and
Kajikawa
,
T.
,
1986
, “
The Study of Condensation Heat Transfer Performance Due to Periodic Motion of a Vertical Tube
,”
Heat Transfer: Jpn. Res.
,
15
(
6
), pp.
32
43
.
18.
Kravchenko
,
V. A.
, and
Fedotkin
,
Yu. Y.
,
1990
, “
Film Condensation Heat Transfer of a Rapidly Moving Vapor
,”
Heat Transfer—Sov. Res.
,
22
(
7
), pp.
963
969
.
19.
Fang
,
G.
, and
Ward
,
C. A.
,
1999
, “
Temperature Measured Close to the Interface of an Evaporating Liquid
,”
Phys. Rev.
,
59
(
1
), pp.
417
428
.
20.
Fedorov
,
V. I.
, and
Luk'yanova
,
É. A.
,
2000
, “
Filling and Storage of Cryogenic Propellant Components Cooled Below Boiling Point in Rocket Tanks at Atmospheric Pressure
,”
Chem. Pet. Eng.
,
36
(
9–10
), pp.
584
587
.
21.
Kozyrev
,
A. V.
, and
Sitnikov
,
A. G.
,
2001
, “
Evaporation of a Spherical Droplet in a Moderate Pressure Gas
,”
Phys. Usp.
,
44
(
7
), pp.
725
733
.
22.
Scurlock
,
R.
,
2004
,
Low Loss Dewars and Tanks: A Basis for Designing Efficient Cryogenic Storage and Handling Systems
, Cryogenic Society of America, Oak Park, IL.
23.
Krahl
,
R.
, and
Adamo
,
M.
,
2004
,
A Model for Two Phase Flow With Evaporation
,
Weierstrass-Institut for Angewandte Analysis and Stochastic
,
Berlin
, p.
899
.
24.
Pistani
,
F.
, and
Thiagarajan
,
K.
,
2012
, “
Experimental Measurements and Data Analysis of the Impact Pressures in a Sloshing Experiment
,”
Ocean Eng.
,
52
(
1
), pp.
60
74
.
25.
Xiong
,
Q.
,
Deng
,
L.
,
Wanga
,
W.
, and
Ge
,
W.
,
2011
, “
SPH Method for Two-Fluid Modeling of Particle–Fluid Fluidization
,”
Chem. Eng. Sci.
,
66
(
9
), pp.
1859
1865
.
26.
Xiong
,
Q.
,
Li
,
Bo.
,
Zhou
,
G.
,
Fang
,
X.
,
Xu
,
Ji.
,
Wanga
,
J.
,
He
,
X.
,
Wang
,
X.
,
Wang
,
L.
,
Ge
,
W.
, and
Li
,
J.
,
2012
, “
Large-Scale DNS of Gas–Solid Flows on Mole-8.5
,”
Chem. Eng. Sci.
,
71
(
26
), pp.
422
430
.
27.
Xiong
,
Q.
,
Kong
,
S.-C.
, and
Passalacqua
,
A.
,
2013
, “
Development of a Generalized Numerical Framework for Simulating Biomass Fast Pyrolysis in Fluidized-Bed Reactors
,”
Chem. Eng. Sci.
,
9
(
9
) pp.
305
313
.
28.
Thiagarajan
,
K. P.
,
Rakshit
,
D.
, and
Repalle
,
N.
,
2011
, “
The Air-Water Sloshing Problem: Fundamental Analysis and Parametric Studies on Excitation and Fill Levels
,”
Int. J. Ocean Eng.
,
38
(
2–3
), pp.
498
508
.
29.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
30.
Parameswaram
,
M.
,
Baltes
,
H. P.
,
Brett
,
M. J.
,
Fraser
,
D. E.
, and
Robinson
,
A. M.
,
1988
, “
A Capacitive Humidity Sensor Based on CMOS Technology With Adsorbing Film
,”
Sens. Actuators
,
15
(
4
), pp.
325
335
.
31.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
New York
.
32.
Balaji
,
C.
,
Hölling
,
M.
,
Herwig
,
H.
,
2007
, “
Entropy Generation Minimization in Turbulent Mixed Convection Flows
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
544
552
.
33.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergmen
,
T. L.
, and
Lavine
,
A. S.
,
2005
,
Introduction to Heat Transfer
, 5th ed.,
Wiley
,
New York
.
34.
Pioro
,
L.
,
1999
, “
Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2003
2013
.
35.
Irvine
,
T. F.
, Jr., and
Liley
,
P. E.
,
1984
,
Steam and Gas Tables with Computer Equations
,
Academic Press
,
Orlando, FL
.
36.
Rakshit
,
D.
,
Narayanaswamy
,
R.
, and
Thiagarajan
,
K. P.
,
2009
, “
Estimation of Entropy Generation Due to Heat Transfer From a Liquid in an Enclosure
,”
ANZIAM J.
,
EMAC2009
, pp.
852
873
.
37.
Malyshev
,
V. V.
, and
Zlobin
,
E. P.
,
1972
, “
Evaporation of Liquid Hydrocarbons in Heated Closed Containers
,”
Inzh.-Fiz. Zh.
,
23
(
4
), pp.
701
708
.
You do not currently have access to this content.