In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the volume of fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal, and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet, and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.
Skip Nav Destination
Article navigation
November 2015
This article was originally published in
Journal of Heat Transfer
Research-Article
Numerical Simulation of Transient Three-Dimensional Temperature and Kerf Formation in Laser Fusion Cutting
Karim Kheloufi,
Karim Kheloufi
Laser Material Processing Team,
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: kkheloufi@cdta.dz
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: kkheloufi@cdta.dz
Search for other works by this author on:
El Hachemi Amara,
El Hachemi Amara
Laser Material Processing Team,
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: amara@cdta.dz
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: amara@cdta.dz
Search for other works by this author on:
Ahmed Benzaoui
Ahmed Benzaoui
Laboratoire Thermodynamique et
Systèmes Energétiques (LTSE),
Faculté de Physique,
Université des Sciences et de la Technologie,
Houari Boumediene (USTHB),
B.P. 32, El Alia - Bab Ezzouar,
Algiers 16111, Algeria
e-mail: abenzaoui@usthb.dz
Systèmes Energétiques (LTSE),
Faculté de Physique,
Université des Sciences et de la Technologie,
Houari Boumediene (USTHB),
B.P. 32, El Alia - Bab Ezzouar,
Algiers 16111, Algeria
e-mail: abenzaoui@usthb.dz
Search for other works by this author on:
Karim Kheloufi
Laser Material Processing Team,
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: kkheloufi@cdta.dz
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: kkheloufi@cdta.dz
El Hachemi Amara
Laser Material Processing Team,
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: amara@cdta.dz
Centre de Développement des
Technologies Avancées,
P.O. Box 17, Baba-Hassen,
Algiers 16303, Algeria
e-mail: amara@cdta.dz
Ahmed Benzaoui
Laboratoire Thermodynamique et
Systèmes Energétiques (LTSE),
Faculté de Physique,
Université des Sciences et de la Technologie,
Houari Boumediene (USTHB),
B.P. 32, El Alia - Bab Ezzouar,
Algiers 16111, Algeria
e-mail: abenzaoui@usthb.dz
Systèmes Energétiques (LTSE),
Faculté de Physique,
Université des Sciences et de la Technologie,
Houari Boumediene (USTHB),
B.P. 32, El Alia - Bab Ezzouar,
Algiers 16111, Algeria
e-mail: abenzaoui@usthb.dz
1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 8, 2014; final manuscript received May 7, 2015; published online June 9, 2015. Assoc. Editor: Wilson K. S. Chiu.
J. Heat Transfer. Nov 2015, 137(11): 112101 (9 pages)
Published Online: June 9, 2015
Article history
Received:
June 8, 2014
Revision Received:
May 7, 2015
Citation
Kheloufi, K., Hachemi Amara, E., and Benzaoui, A. (June 9, 2015). "Numerical Simulation of Transient Three-Dimensional Temperature and Kerf Formation in Laser Fusion Cutting." ASME. J. Heat Transfer. November 2015; 137(11): 112101. https://doi.org/10.1115/1.4030658
Download citation file:
Get Email Alerts
Cited By
Related Articles
The Effect of Laser Beam Geometry on Cut Path Deviation in Diode Laser Chip-Free Cutting of Glass
J. Manuf. Sci. Eng (February,2010)
Effect of Anisotropy on the Quality of Laser Cutting Corner of CFRP Plate
J. Manuf. Sci. Eng (November,2022)
Novel Laser/Water-Jet Hybrid Manufacturing Process for Cutting Ceramics
J. Manuf. Sci. Eng (June,2008)
Active Stressing and the Micromanipulation of Stress-States for Delaying Fracture During Unsupported Laser Cutting
J. Manuf. Sci. Eng (December,2008)
Related Proceedings Papers
Related Chapters
GA Based Multi Objective Optimization of the Predicted Models of Cutting Temperature, Chip Reduction Co-Efficient and Surface Roughness in Turning AISI 4320 Steel by Uncoated Carbide Insert under HPC Condition
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Modeling and Simulation of Cutting Temperature Field with Serrated Chip
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Analysis on Influence of the Tool Orthogonal Rake on Cutting Force, Temperature and Deformation
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)