This paper presents an experimental study of the heat transfer and pressure drop characteristics of a single phase high heat flux microchannel cooling system with spiraling radial inflow. The heat sink provides enhanced heat transfer with a simple inlet and outlet design while providing uniform flow distribution. The system is heated from one conducting wall made of copper and uses water as a working fluid. The microchannel has a 1 cm radius and a 300 μm gap height. Experimental results show, on average, a 76% larger pressure drop compared to an analytic model for laminar flow in a parallel disk system with spiral radial inflow. The mean heat transfer coefficients measured are up to four times the heat transfer coefficient for unidirectional laminar fully developed flow between parallel plates with the same gap height. Flow visualization studies indicate the presence of secondary flows and the onset of turbulence at higher flow rates. Combined with the thermally developing nature of the flow, these characteristics lead to enhanced heat transfer coefficients relative to the laminar parallel plate values. Another beneficial feature of this device, for high heat flux cooling applications, is that the thermal gradients on the surface are small. The average variation in surface temperature is 18% of the total bulk fluid temperature gain across the device. The system showed promising cooling characteristics for electronics and concentrated photovoltaics applications with a heat flux of 113 W/cm2 at a surface temperature of 77 °C and a ratio of pumping power to heat rate of 0.03%.

References

1.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
(
4
), pp.
451
483
.10.1016/j.solmat.2004.09.003
2.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4317
4326
.10.1016/j.ijheatmasstransfer.2009.03.069
3.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
4.
Kandlikar
,
S.
, and
Bapat
,
A.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
5.
McGinn
,
J. H.
,
1955
, “
Observations on the Radial Flow of Water Between Fixed Parallel Plates
,”
Appl. Sci. Res., Sect. A
,
5
(
4
), pp.
255
264
.10.1007/BF03184956
6.
Boyd
,
K.
, and
Rice
,
W.
,
1968
, “
Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks, With Full Peripheral Admission
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
229
237
.10.1115/1.3601185
7.
Singh
,
A.
,
Vyas
,
B.
, and
Powle
,
U.
,
1999
, “
Investigations on Inward Flow Between Two Stationary Parallel Disks
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
395
401
.10.1016/S0142-727X(98)10058-9
8.
Mochizuki
,
S.
, and
Yang
,
W.-J.
,
1987
, “
Local Heat-Transfer Performance and Mechanisms in Radial Flow Between Parallel Disks
,”
J. Thermophys. Heat Transfer
,
1
(
2
), pp.
112
116
.10.2514/3.13
9.
Mochizuki
,
S.
,
Yang
,
W.-J.
,
Yagi
,
Y.
, and
Ueno
,
M.
,
1983
, “
Heat Transfer Mechanisms and Performance in Multiple Parallel Disk Assemblies
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
598
604
.10.1115/1.3245627
10.
Suryanarayana
,
N.
,
Scofield
,
T.
, and
Kleiss
,
R.
,
1983
, “
Heat Transfer to a Fluid in Radial, Outward Flow Between Two Coaxial Stationary or Corotating Disks
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
519
526
.10.1115/1.3245616
11.
Roy
,
G.
,
Palm
,
S. J.
, and
Nguyen
,
C. T.
,
2005
, “
Heat Transfer and Fluid Flow of Nanofluids in Laminar Radial Flow Cooling Systems
,”
J. Therm. Sci.
,
14
(
4
), pp.
362
367
.10.1007/s11630-005-0059-2
12.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2009
, “
Experimental Investigation of Nanofluids in Confined Laminar Radial Flows
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1486
1493
.10.1016/j.ijthermalsci.2009.01.008
13.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
,
2011
, “
Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
369
377
.10.1016/j.ijthermalsci.2010.04.008
14.
Djaoui
,
M.
,
Dyment
,
A.
, and
Debuchy
,
R.
,
2001
, “
Heat Transfer in a Rotor–Stator System With a Radial Inflow
,”
Eur. J. Mech.-B/Fluids
,
20
(
3
), pp.
371
398
.10.1016/S0997-7546(01)01133-5
15.
Devienne
,
R.
, and
Cognet
,
G.
,
1990
, “
Velocity Field and Heat Transfer in a Vortex Flow Exchanger
,”
Heat Mass Transfer
,
25
(
3
), pp.
185
191
.10.1007/BF01590150
16.
Ruiz
,
M.
, and
Carey
,
V. P.
,
2012
, “
Prediction of Single Phase Heat and Momentum Transport in a Spiraling Radial Inflow Microchannel Heat Sink
,”
ASME
Paper No. HT2012-58328.10.1115/HT2012-58328
17.
Taylor
,
J. B.
,
Carrano
,
A. L.
, and
Kandlikar
,
S. G.
,
2006
, “
Characterization of the Effect of Surface Roughness and Texture on Fluid Flow—Past, Present, and Future
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
962
968
.10.1016/j.ijthermalsci.2006.01.004
18.
Heaton
,
H. S.
,
Reynolds
,
W. C.
, and
Kays
,
W. M.
,
1964
, “
Heat Transfer in Annular Passages. Simultaneous Development of Velocity and Temperature Fields in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
763
781
.10.1016/0017-9310(64)90006-7
19.
Webb
,
R.
,
1994
,
Principles of Enhanced Heat Transfer
,
Wiley
,
New York
.
20.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
(Advances in Heat Transfer: Supplement, Vol.
1
),
Academic Press
,
New York
.
You do not currently have access to this content.