It has recently been suggested that the accommodation coefficient of nano-aluminum/alumina particles may be significantly smaller than previously assumed. This result has significant implications on the heat transfer and performance of the nanoparticles in combustion environments. Currently, the accommodation coefficient has been deduced only after assuming a combustion model for the nano-aluminum particle and changing the accommodation coefficient to fit experimental temperature data. Direct measurement is needed in order to decouple the accommodation coefficient from the assumed combustion mechanism. Time-resolved laser-induced incandescence (TiRe-LII) measurements were performed to measure the accommodation coefficient of nano-alumina particles in various gaseous environments. The accommodation coefficient was found to be 0.03, 0.07, and 0.15 in helium, nitrogen, and argon, respectively, at 300 K and 2 atm in each environment. These values represent upper limits for the accommodation coefficient as it is expected to decrease with increasing ambient temperature. The values are similar to what has been seen for other metallic nanoparticles and significantly smaller than values used in soot measurements. The results will allow for additional modeling of the accommodation coefficient extended to other environments and support previous measurements of high combustion temperatures during nano-aluminum combustion.

References

1.
Kuo
,
K. K.
,
1997
,
Challenges in Propellants and Combustion: 100 Years After Nobel
,
Begell House
, Danbury, CT.
2.
Risha
,
G. A.
,
Evans
,
B. J.
,
Boyer
,
E.
,
Wehrman
,
R. B.
, and
Kuo
,
K. K.
,
2003
, “
Nano-Sized Aluminum-and Boron-Based Solid-Fuel Characterization in a Hybrid Rocket Engine
,” 39th
AIAA Joint Propulsion Conference and Exhibit
, Huntsville, AL, July 20–23, Paper No. 2003-4593.
3.
Trunov
,
M. A.
,
Umbrajkar
,
S. M.
,
Schoenitz
,
M.
,
Mang
,
J. T.
, and
Dreizin
,
E. L.
,
2006
, “
Oxidation and Melting of Aluminum Nanopowders
,”
J. Phys. Chem. B
,
110
(
26
), pp.
13094
13099
.
4.
Park
,
K.
,
Lee
,
D.
,
Rai
,
A.
,
Mukherjee
,
D.
, and
Zachariah
,
M.
,
2005
, “
Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation With Single Particle Mass Spectrometry
,”
J. Phys. Chem. B
,
109
(
15
), pp.
7290
7299
.
5.
Levitas
,
V. I.
,
2009
, “
Burn Time of Aluminum Nanoparticles: Strong Effect of the Heating Rate and Melt-Dispersion Mechanism
,”
Combust. Flame
,
156
(
2
), pp.
543
546
.
6.
Daun
,
K.
, and
Huberman
,
S.
,
2012
, “
Influence of Particle Curvature on Transition Regime Heat Conduction From Aerosolized Nanoparticles
,”
Int. J. Heat Mass Transfer
,
55
(
25
), pp.
7668
7676
.
7.
Sipkens
,
T.
,
Joshi
,
G.
,
Daun
,
K.
, and
Murakami
,
Y.
,
2013
, “
Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052401
.
8.
Allen
,
D.
,
Krier
,
H.
, and
Glumac
,
N.
,
2014
, “
Heat Transfer Effects in Nano-Aluminum Combustion at High Temperatures
,”
Combust. Flame
,
161
(
1
), pp.
295
302
.
9.
Altman
,
I.
,
1999
, “
High-Temperature Estimation of Energy Accommodation Coefficient of Gas Molecules on the Surface
,”
J. Phys. Stud.
,
3
(
4
), pp.
456
457
.
10.
Altman
,
I.
,
Lee
,
D.
,
Song
,
J.
, and
Choi
,
M.
,
2001
, “
Experimental Estimate of Energy Accommodation Coefficient at High Temperatures
,”
Phys. Rev. E
,
64
(
5
), p.
052202
.
11.
Kong
,
C.
,
Yao
,
Q.
,
Yu
,
D.
, and
Li
,
S.
,
2015
, “
Combustion Characteristics of Well-Dispersed Aluminum Nanoparticle Streams in Post Flame Environment
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2479
2486
.
12.
Liu
,
F.
,
Smallwood
,
G. J.
, and
Snelling
,
D. R.
,
2005
, “
Effects of Primary Particle Diameter and Aggregate Size Distribution on the Temperature of Soot Particles Heated by Pulsed Lasers
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1
), pp.
301
312
.
13.
Will
,
S.
,
Schraml
,
S.
, and
Leipertz
,
A.
,
1995
, “
Two-Dimensional Soot-Particle Sizing by Time-Resolved Laser-Induced Incandescence
,”
Opt. Lett.
,
20
(
22
), pp.
2342
2344
.
14.
Kock
,
B. F.
,
Eckhardt
,
T.
, and
Roth
,
P.
,
2002
, “
In-Cylinder Sizing of Diesel Particles by Time-Resolved Laser-Induced Incandescence (TR-LII)
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
2775
2782
.
15.
Snelling
,
D. R.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2004
, “
Determination of the Soot Absorption Function and Thermal Accommodation Coefficient Using Low-Fluence LII in a Laminar Coflow Ethylene Diffusion Flame
,”
Combust. Flame
,
136
(
1
), pp.
180
190
.
16.
Eremin
,
A.
,
Gurentsov
,
E.
, and
Schulz
,
C.
,
2008
, “
Influence of the Bath Gas on the Condensation of Supersaturated Iron Atom Vapour at Room Temperature
,”
J. Phys. D
,
41
(
5
), p.
055203
.
17.
Kock
,
B. F.
,
Kayan
,
C.
,
Knipping
,
J.
,
Orthner
,
H. R.
, and
Roth
,
P.
,
2005
, “
Comparison of LII and TEM Sizing During Synthesis of Iron Particle Chains
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1689
1697
.
18.
Sipkens
,
T. A.
,
Mansmann
,
R.
,
Daun
,
K. J.
,
Petermann
,
N.
,
Titantah
,
J. T.
,
Karttunen
,
M.
,
Wiggers
,
H.
,
Dreier
,
T.
, and
Schulz
,
C.
,
2014
, “
In Situ Nanoparticle Size Measurements of Gas-Borne Silicon Nanoparticles by Time-Resolved Laser-Induced Incandescence
,”
Appl. Phys. B
,
116
(
3
), pp.
623
636
.
19.
Daun
,
K.
,
Sipkens
,
T.
,
Titantah
,
J.
, and
Karttunen
,
M.
,
2013
, “
Thermal Accommodation Coefficients for Laser-Induced Incandescence Sizing of Metal Nanoparticles in Monatomic Gases
,”
Appl. Phys. B
,
112
(
3
), pp.
409
420
.
20.
Vander Wal
,
R. L.
,
Ticich
,
T. M.
, and
West
,
J. R.
,
1999
, “
Laser-Induced Incandescence Applied to Metal Nanostructures
,”
Appl. Opt.
,
38
(
27
), pp.
5867
5879
.
21.
Murakami
,
Y.
,
Sugatani
,
T.
, and
Nosaka
,
Y.
,
2005
, “
Laser-Induced Incandescence Study on the Metal Aerosol Particles as the Effect of the Surrounding Gas Medium
,”
J. Phys. Chem. A
,
109
(
40
), pp.
8994
9000
.
22.
Starke
,
R.
,
Kock
,
B.
, and
Roth
,
P.
,
2003
, “
Nano-Particle Sizing by Laser-Induced-Incandescence (LII) in a Shock Wave Reactor
,”
Shock Waves
,
12
(
5
), pp.
351
360
.
23.
Lynch
,
P.
,
Krier
,
H.
, and
Glumac
,
N.
,
2010
, “
Emissivity of Aluminum-Oxide Particle Clouds: Application to Pyrometry of Explosive Fireballs
,”
J. Thermophys. Heat Transfer
,
24
(
2
), pp.
301
308
.
24.
Kalman
,
J.
,
Allen
,
D.
,
Glumac
,
N.
, and
Krier
,
H.
,
2015
, “
Optical Depth Effects on Aluminum Oxide Spectral Emissivity
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
74
82
.
25.
Glassman
,
I.
, and
Yetter
,
R.
,
2008
,
Combustion
,
Academic Press
,
New York
.
26.
Glassman
,
I.
, and
Papas
,
P.
,
1999
, “
Combustion Thermodynamics of Metal-Complex Oxidizer Mixtures
,”
J. Propul. Power
,
15
(
6
), pp.
801
805
.
27.
Glumac
,
N.
,
Krier
,
H.
,
Bazyn
,
T. I. M.
, and
Eyer
,
R.
,
2005
, “
Temperature Measurements of Aluminum Particles Burning in Carbon Dioxide
,”
Combust. Sci. Technol.
,
177
(
3
), pp.
485
511
.
28.
Michelsen
,
H. A.
,
2009
, “
Derivation of a Temperature-Dependent Accommodation Coefficient for Use in Modeling Laser-Induced Incandescence of Soot
,”
Appl. Phys. B
,
94
(
1
), pp.
103
117
.
29.
Goodman
,
F. O.
, and
Wachman
,
H. Y.
,
1967
, “
Formula for Thermal Accommodation Coefficients
,”
J. Chem. Phys.
,
46
(
6
), pp.
2376
2386
.
30.
Goodman
,
F. O.
, and
Wachman
,
H. Y.
,
1976
,
Dynamics of Gas-Surface Scattering
,
Academic Press
,
New York
.
You do not currently have access to this content.