A sample-based stochastic model is presented to investigate the effects of uncertainties of various input parameters, including laser fluence, laser pulse duration, thermal conductivity constants for electron, and electron–lattice coupling factor, on solid–liquid phase change of gold film under nano- to femtosecond laser irradiation. Rapid melting and resolidification of a free-standing gold film subject to nano- to femtosecond laser are simulated using a two-temperature model incorporated with the interfacial tracking method. The interfacial velocity and temperature are obtained by solving the energy equation in terms of volumetric enthalpy for control volume (CV). The convergence of variance (COV) is used to characterize the variability of the input parameters, and the interquartile range (IQR) is used to calculate the uncertainty of the output parameters. The IQR analysis shows that the laser fluence and the electron–lattice coupling factor have the strongest influences on the interfacial location, velocity, and temperatures.

References

1.
Tzou
,
D. Y.
,
1997
,
Macro to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
2.
Hohlfeld
,
J.
,
Wellershoff
,
S. -S.
,
Güdde
,
J.
,
Conrad
,
U.
,
Jähnke
,
V.
, and
Matthias
,
E.
,
2000
, “
Electron and Lattice Dynamics Following Optical Excitation of Metals
,”
Chem. Phys.
,
251
(
1–3
), pp.
237
258
.
3.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel'man
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser
,”
Sov. Phys. J. Exp. Theor. Phys.
,
39
(
2
), pp.
375
377
.
4.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanism During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
835
841
.
5.
Chen
,
J. K.
, and
Beraun
,
J. E.
,
2001
, “
Numerical Study of Ultrashort Laser Pulse Interactions With Metal Films
,”
Numer. Heat Transfer A
,
40
(
1
), pp.
1
20
.
6.
Kuo
,
L. S.
, and
Qiu
,
T.
,
1996
, “
Microscale Energy Transfer During Picosecond Laser Elting of Metal Films
,”
ASME National Heat Transfer Conference
, Vol.
1
, pp.
149
157
.
7.
Chowdhury
,
I. H.
, and
Xu
,
X.
,
2003
, “
Heat Transfer in Femtosecond Laser Processing of Metal
,”
Numer. Heat Transfer A
,
44
(
3
), pp.
219
232
.
8.
Von Der Linde
,
D.
,
Fabricius
,
N.
,
Denielzik
,
B.
, and
Bonkhofer
,
T.
,
1986
, “
Solid Phase Superheating During Picoseconds Laser Melting of Gallium Arsenide
,”
Mater. Res. Soc. Proc.
,
74
, pp.
103
108
.
9.
Voller
,
V. R.
,
1997
, “
An Overview of Numerical Methods for Solving Phase Change Problems
,”
Advances in Numerical Heat Transfer
, 1st ed.,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
Basingstoke
, pp.
341
379
.
10.
Zhang
,
Y.
, and
Chen
,
J. K.
,
2008
, “
An Interfacial Tracing Method for Ultrashort Pulse Laser Melting and Resolidification of a Thin Metal Film
,”
ASME J. Heat Transfer
,
130
(
6
), p.
062401
.
11.
Zhang
,
Y.
, and
Chen
,
J. K.
,
2007
, “
Melting and Resolidification of Gold Film Irradiated by Nano- to Femtosecond Lasers
,”
Appl. Phys. A
,
88
(
2
), pp.
289
297
.
12.
Jiang
,
L.
, and
Tsai
,
H.-L.
,
2005
, “
Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1167
1173
.
13.
Jiang
,
L.
, and
Tsai
,
H.-L.
,
2005
, “
Energy Transport and Material Removal in Wide Bandgap Materials by a Femtosecond Laser Pulse
,”
Int. J. Heat Mass Transfer
,
48
(
3
), pp.
487
499
.
14.
Chen
,
J. K.
,
Latham
,
W. P.
, and
Beraun
,
J. E.
,
2005
, “
The Role of Electron-Phonon Coupling in Ultrafast Laser Heating
,”
J. Laser Appl.
,
17
(
1
), pp.
63
68
.
15.
Lin
,
Z.
,
Zhigilei
,
L. V.
, and
Celli
,
V.
,
2008
, “
Electron-Phonon Coupling and Electron Heat Capacity of Metals Under Condition of Strong Electron-Phonon Equilibrium
,”
Phys. Rev. B
,
77
(
7
), p.
075133
.
16.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
,
1997
,
Solid Freedom Fabrication: A New Direction in Manufacturing
,
Kluwer
,
Dordrecht, The Netherlands
.
17.
Chen
,
T.
, and
Zhang
,
Y.
,
2006
, “
Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
299
306
.
18.
Chen
,
T.
, and
Zhang
,
Y.
,
2007
, “
Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
575
582
.
19.
Xiao
,
B.
, and
Zhang
,
Y.
,
2008
, “
Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintering Layers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041002
.
20.
Fischer
,
P.
,
Romano
,
V.
,
Blatter
,
A.
, and
Weber
,
H. P.
,
2005
, “
High Precision Pulsed Selective Laser Sintering of Metallic Powders
,”
Laser Phys. Lett.
,
2
(
1
), pp.
48
55
.
21.
Padmanabhan
,
S. K.
, and
Pitchumani
,
R.
,
1999
, “
Stochastic Modeling of Nanoisothermal Flow During Resin Transfer Molding Processes
,”
Int. J. Heat Mass Transfer
,
42
(
16
), pp.
3057
3070
.
22.
Diwekar
,
U. M.
, and
Rubin
,
E. S.
,
1991
, “
Stochastic Modeling of Chemical Processes
,”
Comput. Chem. Eng.
,
15
(
2
), pp.
105
114
.
23.
Marwadi
,
A.
, and
Pitchumani
,
R.
,
2008
, “
Numerical Simulations of an Optical Fiber Drawing Process under Uncertainty
,”
J. Lighwave Technol.
,
26
(
5
), pp.
580
587
.
24.
Myers
,
M. R.
,
1989
, “
A Model for Unsteady Analysis of Perform Drawing
,”
AIChE J.
,
35
(
4
), pp.
592
602
.
25.
Marwadi
,
A.
, and
Pitchumani
,
R.
,
2004
, “
Cure Cycle Design for Thermosetting-Matrix Composites Fabrication Under Uncertainty
,”
Ann. Oper. Res.
,
132
(
1
), pp.
19
45
.
26.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2005
, “
Design of Microresonators Under Uncertainty
,”
J. Microelectromech. Syst.
,
14
(
1
), pp.
63
69
.
27.
Marwadi
,
A.
, and
Pitchumani
,
R.
,
2006
, “
Effect of Parameter Uncertainty on the Performance Variability of Proton Exchange Membrane (PEM) Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
232
245
.
28.
Pang
,
H.
,
Zhang
,
Y.
, and
Pai
,
P. F.
,
2013
, “
Uncertainty Analysis of Solid–Liquid–Vapor Phase Change of a Metal Particle Subject to Nanosecond Laser Heating
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021009
.
29.
Chen
,
J. K.
,
Beraun
,
J. E.
, and
Tzou
,
D. Y.
,
2006
, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
307
316
.
30.
Anisimov
,
S. I.
, and
Rethfeld
,
B.
,
1997
, “
Theory of Ultrashort Laser Pulse Interaction With a Metal
,”
Proc. SPIE
,
3093
, pp.
192
203
.
31.
Klemens
,
P. G.
, and
Williams
,
R. K.
,
1986
, “
Thermal Conductivity of Metals and Alloys
,”
Int. Mater. Rev.
,
31
(
1
), pp.
197
215
.
You do not currently have access to this content.