The objective of this work is to model the heat transfer coefficient between an immersed surface and fixed and bubbling fluidized beds of granular phase change material (PCM). The model consists of a two-region model with two different voidages in which steady and transient conduction problems are solved for the fixed and fluidized bed cases, respectively. The model is validated with experimental data obtained under fixed and fluidized conditions for sand, a common material used in fixed and fluidized beds for sensible heat storage, and for a granular PCM with a phase change temperature of approximately 50 °C. The superficial gas velocity is varied to quantify its influence on the convective heat transfer coefficient for both the materials. The model proposed for the PCM properly predicts the experimental results, except for high flow rates, which cause the contact times between the surface and particles to be very small and lead the model to overpredict the results.
Skip Nav Destination
Article navigation
Research-Article
Modeling the Heat Transfer Coefficient Between a Surface and Fixed and Fluidized Beds With Phase Change Material
María A. Izquierdo-Barrientos,
María A. Izquierdo-Barrientos
ISE Research Group,
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: maizquie@ing.uc3m.es
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: maizquie@ing.uc3m.es
Search for other works by this author on:
C. Sobrino,
C. Sobrino
ISE Research Group,
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: csobrino@ing.uc3m.es
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: csobrino@ing.uc3m.es
Search for other works by this author on:
José A. Almendros-Ibáñez
José A. Almendros-Ibáñez
Escuela de Ingenieros Industriales,
Dpto. de Mecánica Aplicada e Ingeniería de
Proyectos,
Castilla-La Mancha University,
Albacete 02071, Spain;
Dpto. de Mecánica Aplicada e Ingeniería de
Proyectos,
Castilla-La Mancha University,
Albacete 02071, Spain;
Renewable Energy Research Institute,
Section of Solar and Energy Efficiency,
C/de la Investigación s/n,
Albacete 02071, Spain
e-mail: jose.almendros@uclm.es
Section of Solar and Energy Efficiency,
C/de la Investigación s/n,
Albacete 02071, Spain
e-mail: jose.almendros@uclm.es
Search for other works by this author on:
María A. Izquierdo-Barrientos
ISE Research Group,
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: maizquie@ing.uc3m.es
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: maizquie@ing.uc3m.es
C. Sobrino
ISE Research Group,
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: csobrino@ing.uc3m.es
Thermal and Fluid Engineering Department,
Universidad Carlos III de Madrid,
Leganés 28911, Spain
e-mail: csobrino@ing.uc3m.es
José A. Almendros-Ibáñez
Escuela de Ingenieros Industriales,
Dpto. de Mecánica Aplicada e Ingeniería de
Proyectos,
Castilla-La Mancha University,
Albacete 02071, Spain;
Dpto. de Mecánica Aplicada e Ingeniería de
Proyectos,
Castilla-La Mancha University,
Albacete 02071, Spain;
Renewable Energy Research Institute,
Section of Solar and Energy Efficiency,
C/de la Investigación s/n,
Albacete 02071, Spain
e-mail: jose.almendros@uclm.es
Section of Solar and Energy Efficiency,
C/de la Investigación s/n,
Albacete 02071, Spain
e-mail: jose.almendros@uclm.es
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 2, 2015; final manuscript received February 27, 2016; published online April 5, 2016. Assoc. Editor: Peter Vadasz.
J. Heat Transfer. Jul 2016, 138(7): 072001 (11 pages)
Published Online: April 5, 2016
Article history
Received:
February 2, 2015
Revised:
February 27, 2016
Citation
Izquierdo-Barrientos, M. A., Sobrino, C., and Almendros-Ibáñez, J. A. (April 5, 2016). "Modeling the Heat Transfer Coefficient Between a Surface and Fixed and Fluidized Beds With Phase Change Material." ASME. J. Heat Transfer. July 2016; 138(7): 072001. https://doi.org/10.1115/1.4032981
Download citation file:
Get Email Alerts
Cited By
Related Articles
Experimental Study on Thermal Characteristics of Finned Coil LHSU Using Paraffin as Phase Change Material
J. Heat Transfer (April,2017)
Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials
J. Heat Transfer (June,2016)
Stability and Thermophysical Properties of Binary Propanol–Water Mixtures-Based Microencapsulated Phase Change Material Suspensions
J. Heat Transfer (September,2015)
Related Proceedings Papers
Related Chapters
Numerical Study on Dynamic Charging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded within Phase Change Materials (PCMS)
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine