The use of high conductive nanoparticles, such as carbon nanotubes (CNT), enhances the thermal and electrical conductivities of the carrier fluid. Depending upon the volumetric concentration of particles and their distribution in the carrier fluid, multifold enhancement of thermal and electrical properties is possible. Therefore, in the present study, thermal and electrical properties of CNT–water mixture are assessed at microscopic level. Special distribution of the CNT in water is obtained experimentally at microscale for different durations of the heating situation. Thermal and electrical properties are predicted numerically incorporating the particle distributions obtained from the experiment. The mass based analysis is also introduced to determine the thermal properties of the mixture. The findings are compared for those obtained from the simulations based on experimentally obtained micro-images. Algebraic equations are introduced to formulate the data obtained from the simulations for temperature dependent properties. It is demonstrated that the mass based estimation of thermal properties are significantly different than those obtained from the experimental based simulations because of the nonuniform particles distribution and their localized conductivity in the carrier fluid.

References

1.
Aghabozorg
,
M. H.
,
Rashidi
,
A.
, and
Mohammadi
,
S.
,
2016
, “
Experimental Investigation of Heat Transfer Enhancement of Fe2O3-CNT/Water Magnetic Nanofluids Under Laminar, Transient and Turbulent Flow Inside a Horizontal Shell and Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
182
189
.
2.
Lee
,
J.
,
Gharagozloo
,
P. E.
,
Kolade
,
B.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
,
2010
, “
Nanofluid Convection in Microtubes
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092401
.
3.
Chiney
,
A.
,
Ganvir
,
V.
, and
Rai
,
B.
,
2014
, “
Stable Nanofluids for Convective Heat Transfer Applications
,”
ASME J. Heat Transfer
,
136
(
2
), p.
021704
.
4.
Harish
,
S.
,
Ishikawa
,
K.
,
Einarsson
,
E.
,
Aikawa
,
S.
,
Chiashi
,
S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
,
2012
, “
Enhanced Thermal Conductivity of Ethylene Glycol With Single-Walled Carbon Nanotube Inclusions
,”
Int. J. Heat Mass Transfer
,
55
(
13
), pp.
3885
3890
.
5.
Nasiri
,
A.
,
Shariaty-Niasar
,
M.
,
Rashidi
,
A. M.
, and
Khodafarin
,
R.
,
2012
, “
Effect of CNT Structures on Thermal Conductivity and Stability of Nanofluid
,”
Int. J. Heat Mass Transfer
,
55
(
5
), pp.
1529
1535
.
6.
Mondragón
,
R.
,
Segarra
,
C.
,
Jarque
,
J. C.
,
Julia
,
J. E.
,
Hernández
,
L.
, and
Martínez-Cuenca
,
R.
,
2012
, November, “
Characterization of Physical Properties of Nanofluids for Heat Transfer Application
,”
J. Phys.: Conf. Ser.
,
395
(
1
), p.
012017
.
7.
Jeong
,
J.
,
Li
,
C.
,
Kwon
,
Y.
,
Lee
,
J.
,
Kim
,
S. H.
, and
Yun
,
R.
,
2013
, “
Particle Shape Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids
,”
Int. J. Refrig.
,
36
(
8
), pp.
2233
2241
.
8.
Kumaresan
,
V.
, and
Velraj
,
R.
,
2012
, “
Experimental Investigation of the Thermo-Physical Properties of Water–Ethylene Glycol Mixture Based CNT Nanofluids
,”
Thermochim. Acta
,
545
, pp.
180
186
.
9.
Karami
,
M.
,
Akhavan-Behabadi
,
M. A.
,
Dehkordi
,
M. R.
, and
Delfani
,
S.
,
2016
, “
Thermo-Optical Properties of Copper Oxide Nanofluids for Direct Absorption of Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
144
, pp.
136
142
.
10.
Babu
,
K.
, and
Kumar
,
T. P.
,
2011
, “
Estimation and Analysis of Surface Heat Flux During Quenching in CNT Nanofluids
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071501
.
11.
Moghaddami
,
M.
,
Mohammadzade
,
A.
, and
Esfehani
,
S. A. V.
,
2011
, “
Second Law Analysis of Nanofluid Flow
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1397
1405
.
12.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2009
, “
Study of Heat Transfer Due to Laminar Flow of Copper–Water Nanofluid Through Two Isothermally Heated Parallel Plates
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
391
400
.
13.
Zhang
,
Y.
,
Li
,
C.
,
Jia
,
D.
,
Zhang
,
D.
, and
Zhang
,
X.
,
2015
, “
Experimental Evaluation of the Lubrication Performance of MoS 2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
19
33
.
14.
Colla
,
L.
,
Fedele
,
L.
,
Scattolini
,
M.
, and
Bobbo
,
S.
,
2012
, “
Water-Based Fe2O3 Nanofluid Characterization: Thermal Conductivity and Viscosity Measurements and Correlation
,”
Adv. Mech. Eng.
,
4
, p.
674947
.
15.
Lamas
,
B.
,
Abreu
,
B.
,
Fonseca
,
A.
,
Martins
,
N.
, and
Oliveira
,
M.
,
2014
, “
Critical Analysis of the Thermal Conductivity Models for CNT Based Nanofluids
,”
Int. J. Therm. Sci.
,
78
, pp.
65
76
.
16.
Mallick
,
S. S.
,
Mishra
,
A.
, and
Kundan
,
L.
,
2013
, “
An Investigation Into Modelling Thermal Conductivity for Alumina–Water Nanofluids
,”
Powder Technol.
,
233
, pp.
234
244
.
17.
Mohebbi
,
A.
,
2012
, “
Prediction of Specific Heat and Thermal Conductivity of Nanofluids by a Combined Equilibrium and Non-Equilibrium Molecular Dynamics Simulation
,”
J. Mol. Liq.
,
175
, pp.
51
58
.
18.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
, Oxford, UK, Vol.
1
.
19.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
20.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1–2
), pp.
167
171
.
21.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
22.
23.
Creative Nano
, “
Carbon Nanotubes
,” http://www.creative-nanotech.com/carbon_nanotubes.html
24.
COOH Functionalized MWCNTs
,” http://www.us-nano.com/inc/sdetail/217
25.
Wu
,
G. S.
,
Yang
,
J. K.
,
Ge
,
S. L.
,
Wang
,
Y. J.
,
Chen
,
M. H.
, and
Chen
,
Y. F.
,
2009
, “
Thermal Conductivity Measurement for Carbon-Nanotube Suspensions With 3ω Method
,”
Adv. Mater. Res.
,
60
, pp.
394
398
.
26.
Yi
,
W.
,
Lu
,
L.
,
Dian-Lin
,
Z.
,
Pan
,
Z. W.
, and
Xie
,
S. S.
,
1999
, “
Linear Specific Heat of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
14
), p.
R9015
.
28.
Li
,
X.
,
Zhu
,
D.
, and
Wang
,
X.
,
2007
, “
Evaluation on Dispersion Behavior of the Aqueous Copper Nano-Suspensions
,”
J. Colloid Interface Sci.
,
310
(
2
), pp.
456
463
.
29.
Wei
,
X.
, and
Wang
,
L.
,
2010
, “
Synthesis and Thermal Conductivity of Microfluidic Copper Nanofluids
,”
Particuology
,
8
(
3
), pp.
262
271
.
30.
Water Quality Sampling and Monitoring Meters and Instruments for Dissolved Oxygen, pH, Turbidity
,” http://www.ysi.com/index.php
You do not currently have access to this content.