The Graetz–Nusselt problem with Brinkman extension is considered for steady-state laminar Newtonian flow in annuli. To solve the problem, a separation of variables method is used. In the limiting cases, the eigenvalues are in full agreement with the eigenvalues corresponding to flat channel and circular pipe. Useful formulas are represented to calculate the length of the thermal entrance region and Nusselt numbers in annuli.
Issue Section:
Technical Brief
References
1.
Graetz
, L.
, 1885
, “Ueber die Wärmeleitungsfähigkeit von Flüssigkeiten
,” Ann. Phys.
, 261
(7
), pp. 337
–357
.2.
Sellars
, J. R.
, Tribus
, M.
, and Klein
, J. S.
, 1956
, “Heat Transfer to Laminar Flow in a Round Pipe or Flat Conduit. The Graetz Problem Extended
,” Trans. ASME
, 78
(2
), pp. 441
–448
.3.
Nusselt
, W.
, 1910
, “Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge
,” Z. Ver. Dtsch. Ing.
, 54
, pp. 1154
–1156
.4.
Abramowitz
, M.
, 1953
, “On the Solution of the Differential Equation Occurring in the Problem of Heat Convection in Laminar Flow Through a Pipe
,” J. Math. Phys.
, 32
(1–4), pp. 184
–192
.5.
Larkin
, B. K.
, 1961
, “High-Order Eigenfunctions of the Graetz Problem
,” AIChE J.
, 7
(3
), p. 530
.6.
Brown
, G. M.
, 1960
, “Heat or Mass Transfer in a Fluid in Laminar Flow in Circular of Flat Conduit
,” AIChE J.
, 6
(2
), pp. 179
–183
.7.
Prins
, J. A.
, Mulder
, J.
, and Schenk
, J.
, 1954
, “Heat Transfer in Laminar Flow Between Parallel Plates
,” Appl. Sci. Res.
, A2
, pp. 431
–438
.8.
Ehret
, L.
, and Hahnemann
, H.
, 1942
, “Wärme-u Kältetech,” p. 167
.9.
Eckert
, E. R. G.
, 1959
, Heat and Mass Transfer, Part A, Heat Conduction and Appendix of Property Values
, Robert M.
Drake
, Jr., ed., 2nd ed., McGraw-Hill
, New York
, p. 530
.10.
Malik
, M. Y.
, Hussain
, A.
, and Nadeem
, S.
, 2011
, “Commun Flow of Jeffery-Six Constant Fluid Between Coaxial Cylinders With Heat Transfer Analysis
,” Theor. Phys.
, 56
(2
), pp. 345
–351
.11.
Mahulikar
, S. P.
, Kumar
, R.
, Tripathi
, M. S.
, and Pasari
, L. K.
, 2010
, “A Modified Dimensionless Number and Geometric Symmetry in Annulus Convection With Viscous Dissipation
,” Int. J. Heat Mass Transfer
, 53
(25–26), pp. 5976
–5983
.12.
Galanis
, N.
, and Rashidi
, M. M.
, 2012
, “Entropy Generation in Non-Newtonian Fluids Due to Heat and Mass Transfer in Entrance Region of Ducts
,” Heat Mass Transfer
, 48
(9
), pp. 1647
–1662
.13.
Ul′ev
, L. M.
, 2000
, “Heat Exchange During a Slow Flow of a Liquid Between Coaxial Conical Surfaces
,” Theor. Found. Chem. Eng.
, 34
(1
), pp. 13
–21
.14.
Haddad
, O. M.
, Alkam
, M. K.
, and Khasawneh
, M. T.
, 2004
, “Entropy Generation Due to Laminar Forced Convection in the Entrance Region of a Concentric Annulus
,” Energy
, 29
(1
), pp. 35
–55
.15.
Shah
, R. K.
, and London
, A. L.
, 1978
, “Laminar Flow Forced Convection in Ducts
,” Advances in Heat Transfer
, Academic Press
, New York
.16.
Hazewinkel
, M.
, ed., 2001
, “Sturm–Liouville Theory
,” Encyclopedia of Mathematics
, Springer
, New York
.Copyright © 2016 by ASME
You do not currently have access to this content.