This paper investigates the effect of temperature-jump boundary condition on nonequilibrium entropy production under the effect of the dual-phase-lagging (DPL) heat conduction model in a two-dimensional sub-100 nm metal-oxide-semiconductor field effect transistor (MOSFET). The transient DPL model is solved using finite element method. Also, the influences of the governing parameters on global entropy generation for the following cases—(I) constant applied temperature, (II) temperature-jump boundary condition, and (III) a realistic MOSFET with volumetric heat source and adiabatic boundaries—are discussed in detail and depicted graphically. The analysis of our results indicates that entropy generation minimization within a MOSFET can be achieved by using temperature-jump boundary condition and for low values of Knudsen number. A significant reduction of the order of 85% of total entropy production is observed when a temperature-jump boundary condition is adopted.

References

1.
Ho
,
C. S.
,
Liou
,
J. J.
, and
Chen
,
F.
,
2000
, “
An Analytical MOSFET Breakdown Model Including Self-Heating Effect
,”
Solid-State Electron.
,
44
(
1
), pp.
125
131
.
2.
Liao
,
M.
, and
Gan
,
Z.
,
2014
, “
New Insight on Negative Bias Temperature Instability Degradation With Drain Bias of 28 nm High-K Metal Gate p-MOSFET Devices
,”
Microelectron. Reliab.
,
54
(
11
), pp.
2378
2382
.
3.
Rhew
,
J.-H.
,
Ren
,
Z.
, and
Lundstrom
,
M. S.
,
2002
, “
A Numerical Study of Ballistic Transport in a Nanoscale MOSFET
,”
Solid-State Electron.
,
46
(
11
), pp.
1899
1906
.
4.
Cheng
,
M.-C.
,
Yu
,
F.
,
Jun
,
L.
,
Shen
,
M.
, and
Ahmadi
,
G.
,
2004
, “
Steady-State and Dynamic Thermal Models for Heat Flow Analysis of Silicon-on-Insulator MOSFETs
,”
Microelectron. Reliab.
,
44
(
3
), pp.
381
396
.
5.
Jagadesh Kumar
,
M.
, and
Orouji
,
A. A.
,
2006
, “
Investigation of a New Modified Source/Drain for Diminished Self-Heating Effects in Nanoscale MOSFETs Using Computer Simulation
,”
Physica E
,
33
(
1
), pp.
134
138
.
6.
Agaiby
,
R.
,
Yang
,
Y.
,
Olsen
,
S. H.
,
O'Neill
,
A. G.
,
Eneman
,
G.
,
Verheyen
,
P.
,
Loo
,
R.
, and
Claeys
,
C.
,
2007
, “
Quantifying Self-Heating Effects With Scaling in Globally Strained Si MOSFETs
,”
Solid-State Electron.
,
51
(11–12), pp.
1473
1478
.
7.
O'Neill
,
A.
,
Agaiby
,
R.
,
Olsen
,
S.
,
Yang
,
Y.
,
Hellstrom
,
P.-E.
,
Ostling
,
M.
,
Oehme
,
M.
,
Lyutovich
,
K.
,
Kasper
,
E.
,
Eneman
,
G.
,
Verheyen
,
P.
,
Loo
,
R.
,
Claeys
,
C.
,
Fiegna
,
C.
, and
Sangiorgi
,
E.
,
2008
, “
Reduced Self-Heating by Strained Silicon Substrate Engineering
,”
Appl. Surf. Sci.
,
254
(
19
), pp.
6182
6185
.
8.
Alatise
,
O. M.
,
Kwa
,
K. S. K.
,
Olsen
,
S. H.
, and
O'Neill
,
A. G.
,
2010
, “
The Impact of Self-Heating and SiGe Strain-Relaxed Buffer Thickness on the Analog Performance of Strained Si nMOSFETs
,”
Solid-State Electron.
,
54
(
3
), pp.
327
335
.
9.
Liu
,
W.
, and
Asheghi
,
M.
,
2004
, “
Thermal Modeling of Self-Heating in Strained-Silicon MOSFETs
,” The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITHERM
), Las Vegas, NV, June 1–4, Vol.
2
, p.
605
.
10.
Fixel
,
D. A.
, and
Hitchon
,
W. N. G.
,
2007
, “
Convective Scheme Solution of the Boltzmann Transport Equation for Nanoscale Semiconductor Devices
,”
J. Comput. Phys.
,
227
(
2
), pp.
1387
1410
.
11.
Sabry
,
M. N.
,
Fikry
,
W.
,
Abdel Salam
,
Kh.
,
Awad
,
M. M.
, and
Nasser
,
A. E.
,
2001
, “
A Lumped Transient Thermal Model for Self-Heating in MOSFETs
,”
Microelectron. J.
,
32
(10–11), pp.
847
853
.
12.
Marek
,
J.
,
Chvála
,
A.
,
Donoval
,
D.
,
Príbytný
,
P.
,
Molnár
,
M.
, and
Mikolášek
,
M.
,
2014
, “
Compact Model of Power MOSFET With Temperature Dependent Cauer RC Network for More Accurate Thermal Simulations
,”
Solid-State Electron.
,
94
, pp.
44
50
.
13.
Yang
,
R.
,
Chen
,
G.
,
Laroche
,
M.
, and
Taur
,
Y.
,
2005
, “
Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
298
306
.
14.
Ghazanfarian
,
J.
, and
Abbassi
,
A.
,
2012
, “
Investigation of 2D Transient Heat Transfer Under the Effect of Dual-Phase-Lag Model in a Nanoscale Geometry
,”
Int. J. Thermophys.
,
33
(
3
), pp.
552
566
.
15.
Ghazanfarian
,
J.
, and
Shomali
,
Z.
,
2012
, “
Investigation of Dual-Phase-Lag Heat Conduction Model in a Nanoscale Metal-Oxide-Semiconductor Field-Effect Transistor
,”
Int. J. Heat Mass Transfer
,
55
(21–22), pp.
6231
6237
.
16.
Nasri
,
F.
,
Echouchene
,
F.
,
Ben Aissa
,
M. F.
,
Graur
,
I.
, and
Belmabrouk
,
H.
,
2015
, “
Investigation of Self-Heating Effects in a 10-nm SOI-MOSFET With an Insulator Region Using Electrothermal Modeling
,”
IEEE Trans. Electron Devices
,
62
(
8
), pp.
2410
2415
.
17.
Romano
,
V.
, and
Rusakov
,
A.
,
2010
, “
2D Numerical Simulations of an Electron–Phonon Hydrodynamical Model Based on the Maximum Entropy Principle
,”
Comput. Methods Appl. Mech. Eng.
,
199
(41–44), pp.
2741
2751
.
18.
Dong
,
Y.
, and
Guo
,
Z. Y.
,
2011
, “
Entropy Analyses for Hyperbolic Heat Conduction Based on the Thermomass Model
,”
Int. J. Heat Mass Transfer
,
54
(9–10), pp.
1924
1929
.
19.
Tzou
,
D. Y.
,
1989
, “
On the Thermal Shock Wave Induced by a Moving Heat Source
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
232
238
.
20.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro Scales
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
8
16
.
21.
Tzou
,
D. Y.
,
1995
, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3231
3240
.
22.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.
23.
Han
,
P.
,
Tang
,
D.
, and
Zhou
,
L.
,
2006
, “
Numerical Analysis of Two-Dimensional Lagging Thermal Behavior Under Short-Pulse-Laser Heating on Surface
,”
Int. J. Eng. Sci.
,
44
(
20
), pp.
1510
1519
.
24.
Akbarzadeh
,
A. H.
, and
Pasini
,
D.
,
2014
, “
Phase-Lag Heat Conduction in Multilayered Cellular Media With Imperfect Bonds
,”
Int. J. Heat Mass Transfer
,
75
, pp.
656
667
.
25.
Dai
,
W.
,
Han
,
F.
, and
Sun
,
Z.
,
2013
, “
Accurate Numerical Method for Solving Dual-Phase-Lagging Equation With Temperature Jump Boundary Condition in Nano-Heat Conduction
,”
Int. J. Heat Mass Transfer
,
64
, pp.
966
975
.
26.
Ghazanfarian
,
J.
, and
Abbassi
,
A.
,
2009
, “
Effect of Boundary Phonon Scattering on Dual-Phase-Lag Model to Simulate Micro- and Nano-Scale Heat Conduction
,”
Int. J. Heat Mass Transfer
,
52
(15–16), pp.
3706
3711
.
27.
Lee
,
H.-L.
,
Chen
,
W.-L.
,
Chang
,
W.-J.
,
Wei
,
E.-J.
, and
Yang
,
Y.-C.
,
2013
, “
Analysis of Dual-Phase-Lag Heat Conduction in Short-Pulse Laser Heating of Metals With a Hybrid Method
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
275
283
.
28.
Al-Nimr
,
M. A.
,
Naji
,
M.
, and
Arbaci
,
V. S.
,
2000
, “
Nonequilibrium Entropy Production Under the Effect of the Dual-Phase-Lag Heat Conduction Model
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
217
223
.
29.
Shomali
,
Z.
, and
Abbassi
,
A.
,
2014
, “
Investigation of Highly Non-Linear Dual-Phase-Lag Model in Nanoscale Solid Argon With Temperature-Dependent Properties
,”
Int. J. Therm. Sci.
,
83
, pp.
56
67
.
30.
Hajizadeh
,
M.
,
Ghalichi
,
F.
, and
Mirzakouchaki
,
B.
,
2016
, “
Optimization of Orthodontic Bracket Base Geometry for Planar Enamel Surface Teeth: A Finite Element Study
,”
Orthod. Waves
,
75
(
3
), pp.
64
75
.
31.
Della Bona
,
Á.
,
Borba
,
M.
,
Benetti
,
P.
,
Duan
,
Y.
, and
Griggs
,
J. A.
,
2013
, “
Three-Dimensional Finite Element Modelling of All-Ceramic Restorations Based on Micro-CT
,”
J. Dent.
,
41
(
5
), pp.
412
419
.
32.
Liao
,
L.-L.
,
Hung
,
T.-Y.
,
Liu
,
C.-K.
,
Li
,
W.
,
Dai
,
M.-J.
, and
Chiang
,
K.-N.
,
2014
, “
Electro-Thermal Finite Element Analysis and Verification of Power Module With Aluminum Wire
,”
Microelectron. Eng.
,
120
, pp.
114
120
.
33.
Sullivan
,
B. J.
,
2010
, “
The Finite Element Method and Earthquake Engineering: The 2006 Benjamin Franklin Medal in Civil Engineering Presented to Ray W. Clough
,”
J. Franklin Inst.
,
347
(
4
), pp.
672
680
.
34.
Cremonesi
,
M.
, and
Frangi
,
A.
,
2016
, “
A Lagrangian Finite Element Method for 3D Compressible Flow Applications
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
374
392
.
35.
Garegnani
,
G.
,
Fiori
,
V.
,
Gouget
,
G.
,
Monsieur
,
F.
, and
Tavernier
,
C.
,
2016
, “
Wafer Level Measurements and Numerical Analysis of Self-Heating Phenomena in Nano-Scale SOI MOSFETs
,”
Microelectron. Reliab.
,
63
, pp.
90
96
.
36.
Le Borgne
,
B.
,
Salaün
,
A.-C.
, and
Pichon
,
L.
,
2016
, “
Electrical Properties of Self-Aligned Gate-All-Around Polycrystalline Silicon Nanowires Field-Effect Transistors
,”
Microelectron. Eng.
,
150
, pp.
32
38
.
37.
Park
,
S. J.
,
Jeon
,
D.-Y.
,
Montès
,
L.
,
Barraud
,
S.
,
Kim
,
G.-T.
, and
Ghibaudo
,
G.
,
2014
, “
Impact of Channel Width on Back Biasing Effect in Tri-Gate MOSFET
,”
Microelectron. Eng.
,
114
, pp.
91
97
.
38.
Lee
,
C.-C.
,
Hsieh
,
C.-P.
,
Huang
,
P.-C.
,
Cheng
,
S.-W.
, and
Liao
,
M.-H.
,
2016
, “
Ge1-xSix on Ge-Based n-Type Metal-Oxide Semiconductor Field-Effect Transistors by Device Simulation Combined With High-Order Stress-Piezoresistive Relationships
,”
Thin Solid Films
,
602
, pp.
78
83
.
39.
Lee
,
C.-C.
,
Cheng
,
H.-C.
,
Hsu
,
H.-W.
,
Chen
,
Z.-H.
,
Teng
,
H.-H.
, and
Liu
,
Ch.-H.
,
2014
, “
Mechanical Property Effects of Si1-xGex Channel and Stressed Contact Etching Stop Layer on Nano-Scaled n-Type Metal-Oxide-Semiconductor Field Effect Transistors
,”
Thin Solid Films
,
557
, pp.
316
322
.
40.
Chen
,
P.-Y.
,
Shao
,
Y.-L.
,
Cheng
,
K.-W.
,
Hsu
,
K.-H.
,
Wu
,
J.-S.
, and
Ju
,
J.-P.
,
2007
, “
Three-Dimensional Simulation Studies on Electrostatic Predictions for Carbon Nanotube Field Effect Transistors
,”
Comput. Phys. Commun.
,
177
(
9
), pp.
683
688
.
41.
Saghatchi
,
R.
, and
Ghazanfarian
,
J.
,
2015
, “
A Novel SPH Method for the Solution of Dual-Phase-Lag Model With Temperature-Jump Boundary Condition in Nanoscale
,”
Appl. Math. Modell.
,
39
(3–4), pp.
1063
1073
.
42.
Xu
,
M.
, and
Wang
,
L.
,
2005
, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
48
(25–26), pp.
5616
5624
.
You do not currently have access to this content.