In this paper, we found, by means of numerical simulations, a transition in the oscillatory character of the flow field for a particular combination of buoyancy and spacing in an array of six circular cylinders at a Reynolds number of 100 and Prandtl number of 0.7. The cylinders are isothermal and they are aligned with the earth acceleration (g). According to the array orientation, an aiding or an opposing buoyancy is considered. The effect of natural convection with respect to the forced convection is modulated with the Richardson number, Ri, ranging between −1 and 1. Two values of center-to-center spacing (s = 3.6d–4d) are considered. The effects of buoyancy and spacing on the flow pattern in the near and far field are described. Several transitions in the flow patterns are found, and a parametric analysis of the dependence of the force coefficients and Nusselt number with respect to the Richardson number is reported. For Ri=−1, the change of spacing ratio from 3.6 to 4 induces a transition in the standard deviation of the force coefficients and heat flux. In fact, the transition occurs due to rearrangement of the near-field flow in a more ordered wake pattern. Therefore, attention is focused on the influence of geometrical and buoyancy parameters on the heat and momentum exchange and their fluctuations. The available heat exchange models for cylinders array provide a not accurate prediction of the Nusselt number in the cases here studied.

References

1.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
.
2.
Wan
,
Y.
,
Tamuly
,
D.
,
Allen
,
P. B.
,
Kim
,
Y.-T.
,
Bachoo
,
R.
,
Ellington
,
A. D.
, and
Iqbal
,
S. M.
,
2013
, “
Proliferation and Migration of Tumor Cells in Tapered Channels
,”
Biomed. Microdevices
,
15
(
4
), pp.
635
643
.
3.
Wang
,
S.-y.
,
Tian
,
F.-b.
,
Jia
,
L.-b.
,
Lu
,
X.-y.
, and
Yin
,
X.-z.
,
2010
, “
Secondary Vortex Street in the Wake of Two Tandem Circular Cylinders at Low Reynolds Number
,”
Phys. Rev. E
,
81
(
3
), p.
036305
.
4.
Duryodhan
, V
. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2016
, “
A Simple and Novel Way of Maintaining Constant Wall Temperature in Microdevices
,”
Sci. Rep.
,
6
(
18230
), pp.
1
15
.
5.
Selimefendigil
,
F.
, and
Oztop
,
H.
,
2014
, “
Control of Laminar Pulsating Flow and Heat Transfer in Backward-Facing Step by Using a Square Obstacle
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081701
.
6.
Fornarelli
,
F.
,
Oresta
,
P.
, and
Lippolis
,
A.
,
2015
, “
Flow Patterns and Heat Transfer Around Six In-Line Circular Cylinders at Low Reynolds Number
,”
JP J. Heat Mass Transfer
,
11
(
1
), pp.
1
28
.
7.
Chatterjee
,
D.
,
2014
, “
Dual Role of Thermal Buoyancy in Controlling Boundary Layer Separation Around Bluff Obstacles
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
152
158
.
8.
Clifford
,
C.
, and
Kimber
,
M.
,
2014
, “
Optimizing Laminar Natural Convection for a Heat Generating Cylinder in a Channel
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112502
.
9.
Patnaik
,
B.
,
Narayana
,
P.
, and
Seetharamu
,
K.
,
2000
, “
Finite Element Simulation of Transient Laminar Flow Past a Circular Cylinder and Two Cylinders in Tandem
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
6
), pp.
560
580
.
10.
Khan
,
W.
,
Culham
,
J.
, and
Yovanovich
,
M.
,
2006
, “
Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4831
4838
.
11.
Wang
,
Y.
,
Penner
,
L.
, and
Ormiston
,
S.
,
2000
, “
Analysis of Laminar Forced Convection of Air for Crossflow in Banks of Staggered Tubes
,”
Numer. Heat Transfer, Part A
,
38
(
8
), pp.
819
845
.
12.
Gowda
,
Y.
,
Narayana
,
P.
, and
Seetharamu
,
K.
,
1998
, “
Finite Element Analysis of Mixed Convection Over In-Line Tube Bundles
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1613
1619
.
13.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.
14.
Gnielinski
,
V.
,
1975
, “
Berechnung mittlerer wärme- und stoffübergangskoeffizienten an laminar und turbulent überströmten einzelkörpern mit hilfe einer einheitlichen gleichung
,”
Forsch. Ingenieurwes.
,
41
(
5
), pp.
145
153
.
15.
Barkley
,
D.
, and
Henderson
,
R.
,
1996
, “
Three-Dimensional Floquet Stability Analysis of the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
322
, pp.
215
241
.
16.
Carmo
,
B. S.
,
Meneghini
,
J. R.
, and
Sherwin
,
S. J.
,
2010
, “
Secondary Instabilities in the Flow Around Two Circular Cylinders in Tandem
,”
J. Fluid Mech.
,
644
, pp.
395
431
.
17.
Carmo
,
B.
,
Meneghini
,
J.
, and
Sherwin
,
S.
,
2010
, “
Possible States in the Flow Around Two Circular Cylinders in Tandem With Separations in the Vicinity of the Drag Inversion Spacing
,”
Phys. Fluids
,
22
(
5
), p.
054101
.
18.
Maas
,
W.
,
Rindt
,
C.
, and
van Steenhoven
,
A.
,
2003
, “
The Influence of Heat on the 3D-Transition of the von Kármán Vortex Street
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3069
3081
.
19.
Ren
,
M.
,
Rindt
,
C.
, and
van Steenhoven
,
A.
,
2004
, “
Experimental and Numerical Investigation of the Vortex Formation Process Behind a Heated Cylinder
,”
Phys. Fluids
,
16
(
8
), pp.
3103
3114
.
20.
Boirlaud
,
M.
,
Couton
,
D.
, and
Plourde
,
F.
,
2012
, “
Direct Numerical Simulation of the Turbulent Wake Behind a Heated Cylinder
,”
Int. J. Heat Fluid Flow
,
38
, pp.
82
93
.
21.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.
You do not currently have access to this content.