It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.

References

1.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
2.
Sparrow
,
E. M.
,
Larson
,
E. D.
, and
Ramsey
,
J. M.
,
1981
, “
Freezing on a Finned Tube for Either Conduction-Controlled or Natural Convection-Controlled Heat Transfer
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
273
284
.
3.
Balthelt
,
A. G.
, and
Viskanta
,
R.
,
1981
, “
Heat Transfer and Interface Motion During Melting and Solidification Around a Finned Horizontal Sink/Source
,”
ASME J. Heat Transfer
,
103
(
4
), pp.
720
726
.
4.
Padmanabhan
,
P. V.
, and
Khrishna
,
M. V.
,
1986
, “
Outward Phase Change in a Cylindrical Annulus With Axial Fins on the Inner Tube
,”
Int. J. Heat Mass Transfer
,
29
(12), pp.
1855
1868
.
5.
Ismail
,
K. A. R.
, and
Alves
,
C. L.
,
1989
, “
Numerical Solution of Finned Geometries Immersed in Phase Change Material
,”
26th National Heat Transfer Conference
, ASME-HTD, Philadelphia, PA, aug. 6–9, Vol.
109
, pp.
31
36
.
6.
Lacroix
,
M.
,
1993
, “
Study of the Heat Transfer Behaviour of a Latent Heat Thermal Energy Storage Unit With a Finned Tube
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2083
2092
.
7.
Lamberg
,
P.
, and
Siren
,
K.
,
2003
, “
Analytical Model for Melting in a Semi-Finite PCM Storage With an Internal Fin
,”
Heat Mass Transfer
,
39
(
2
), pp.
167
176
.
8.
Yuelian
,
Z.
, and
Danxing
,
Z.
,
2006
, “
Heat Transfer Performance of Paraffin as a Phase Change Material in a Concentric Annulus
,”
J. Beijing Univ. Chem. Tech.
,
33
(
2
), pp.
5
8
.
9.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2011
, “
Experimental Study on the Melting and Solidification Behaviour of a Medium Temperature Phase Change Storage Material (Erythritol) System Augmented With Fins to Power a LiBr/H2O Absorption Cooling System
,”
Renewable Energy
,
36
(
1
), pp.
108
117
.
10.
Agyenim
,
F.
, and
Hewitt
,
N.
,
2010
, “
The Development of a Finned Phase Change Material (PCM) Storage System to Take Advantage of Off-Peak Electricity Tariff for Improvement in Cost of Heat Pump Operation
,”
Energy Build.
,
42
(
9
), pp.
1552
1560
.
11.
Agyenim
,
F.
,
Eames
,
P.
, and
Smyth
,
M.
,
2009
, “
A Comparison of Heat Transfer Enhancement in a Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins
,”
Sol. Energy
,
83
(
9
), pp.
1509
1520
.
12.
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2011
, “
Fins and Turbulence Promoters for Heat Transfer Enhancement in Latent Storage Systems
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1010
1018
.
13.
Mosaffaa
,
A. H.
,
Talati
,
F.
,
Tabrizib
,
H. B.
, and
Rosen
,
M. A.
,
2012
, “
Analytical Modeling of PCM Solidification in a Shell and Tube Finned Thermal Storage for Air Conditioning Systems
,”
Energy Build.
,
49
, pp.
356
361
.
14.
Tay
,
N. H. S.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2013
, “
Comparison of Pinned and Finned Tubes in a Phase Change Thermal Energy Storage System Using CFD
,”
Appl. Energy
,
104
, pp.
79
86
.
15.
Tay
,
N. H. S.
,
Belusko
,
M.
,
Castell
,
A.
,
Cabeza
,
L. F.
, and
Bruno
,
F.
,
2014
, “
An Effectiveness-NTU Technique for Characterising a Finned Tubes PCM System Using a CFD Model
,”
Appl. Energy
,
131
, pp.
377
385
.
16.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
, and
Sulaiman
,
M. Y.
,
2014
, “
Experimental Study of Melting and Solidification of PCM in a Triplex Tube Heat Exchanger With Fins
,”
Energy Build.
,
68
, pp.
33
41
.
17.
Rahimi
,
M.
,
Ranjbar
,
A. A.
,
Ganji
,
D. D.
,
Sedighi
,
K.
,
Hosseini
,
M. J.
, and
Bahrampoury
,
R.
,
2014
, “
Analysis of Geometrical and Operational Parameters of PCM in a Fin and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
109
115
.
18.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2015
, “
Thermal Performance Enhancement of Shell and Tube Latent Heat Storage Unit Using Longitudinal Fins
,”
Appl. Therm. Eng.
,
75
, pp.
1084
1092
.
19.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in a Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
.
20.
Kong
,
Y. Q.
,
Yang
,
L. J.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2016
, “
Air-Side Flow and Heat Transfer Characteristics of Flat and Slotted Finned Tube Bundles With Various Tube Pitches
,”
Int. J. Heat Mass Transfer
,
99
, pp.
357
371
.
21.
Chen
,
H. T.
,
Lin
,
Y. S.
,
Chen
,
P. C.
, and
Chang
,
J. R.
,
2016
, “
Numerical and Experimental Study of Natural Convection Heat Transfer Characteristics for Vertical Plate Fin and Tube Heat Exchangers With Various Tube Diameters
,”
Int. J. Heat Mass Transfer
,
100
, pp.
320
331
.
You do not currently have access to this content.