This note is concerned with a new method for the solution of an elliptic inverse heat conduction problem (IHCP). It considers an elliptic system where no information is given at part of the boundary. The method is iterative in nature. Starting with an initial guess for the missing boundary condition, the algorithm obtains corrections to the assumed value at every iteration. The updating part of the algorithm is the new feature of the present algorithm. The algorithm shows good robustness to noise and can be used to obtain a good estimate of the unknown boundary condition. A number of numerical examples are used to show the applicability of the method.

References

1.
Hensel
,
A.
, and
Hills
,
R.
,
1987
, “
Steady-State Two-Dimensional Inverse Heat Conduction
,”
Inverse Probl. Sci. Eng.
,
15
(
2
), pp.
227
240
.
2.
Taler
,
J.
, and
Duda
,
P.
,
2006
,
Solving Direct and Inverse Heat Conduction Problems
,
Springer-Verlag
,
Berlin
.
3.
Hao
,
D. H.
, and
Dinh
,
N. H.
,
1998
,
Methods for Inverse Heat Conduction
,
Peter Lang GmbH
,
Frankfurt, Germany
.
4.
Lattes
,
R.
, and
Lions
,
J.
,
1960
,
Method of Quazi-Reversibility: Application to Partial Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
5.
Wu
,
X.-H.
, and
Tao
,
W.-Q.
,
2008
, “
Meshless Method Based on the Local Weak-Forms for Steady-State Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3103
3112
.
6.
Gu
,
Y.
,
Chen
,
W.
, and
He
,
X.-Q.
,
2012
, “
Singular Boundary Method for Steady-State Heat Conduction in Three Dimensional General Anisotropic Media
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4837
4848
.
7.
Kanjanakijkasem
,
W.
,
2015
, “
A Finite Element Method for Prediction of Unknown Boundary Conditions in Two-Dimensional Steady-State Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
88
, pp.
891
901
.
8.
Wroblewska
,
A.
,
Frackowiak
,
A.
, and
Cialkowski
,
M.
,
2016
, “
Regularization of the Inverse Heat Conduction Problem by the Discrete Fourier Transform
,”
Inverse Probl. Sci. Eng.
,
24
(
2
), pp.
195
212
.
9.
Mohebbi
,
F.
, and
Sellier
,
M.
,
2016
, “
Parameter Estimation in Heat Conduction Using a Two-Dimensional Inverse Analysis
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
17
(
4
), pp.
274
287
.
10.
Olson
,
L.
, and
Throne
,
R.
,
2000
, “
A Comparison of Generalized Eigensystem, Truncated Singular Value Decomposition, and Tikhonov Regularization for the Steady Inverse Heat Conduction Problem
,”
Inverse Probl. Eng.
,
8
(
3
), pp.
193
227
.
11.
Hao
,
D. N.
,
Thanh
,
P. H.
,
Lesnic
,
D.
, and
Johansson
,
B. T.
,
2012
, “
A Boundary Element Method for a Multi-Dimensional Inverse Heat Conduction Problem
,”
Int. J. Comput. Math.
,
89
(
11
), pp.
1540
1554
.
12.
Tadi
,
M.
, and
Sritharan
,
S. S.
,
2012
, “
Identification of Far-Field Electric Field Based on Near Field Distributed Measurements
,”
Int. J. Comput. Appl. Math.
,
7
(
3
), pp.
235
249
.
13.
Hamad
,
A.
, and
Tadi
,
M.
,
2016
, “
A Numerical Method for Inverse Source Problems for Possion and Helmholtz Equations
,”
Phys. Lett. A
,
380
(
44
), pp.
3707
3716
.
14.
Tadi
,
M.
,
Nandakumaran
,
A. K.
, and
Sritharan
,
S. S.
,
2011
, “
An Inverse Problem for Helmholtz Equation
,”
Inverse Probl. Sci. Eng.
,
19
(
6
), pp.
839
854
.
15.
Wang
,
Y.
,
Tadi
,
M.
, and
Radenkovic
,
M.
, “
A Numerical Method for an Inverse Problem for Helmholtz Equation With Separable Wave Number
,”
Int. J. Comput. Sci. Math.
(in press).
You do not currently have access to this content.