Fully developed forced convective heat transfer within a channel filled with a functionally graded metal foam matrix was investigated analytically for the case of constant wall heat flux. A series of functionally graded metal foam matrices of the same mass (i.e., the same solidity) were examined in views of their heat transfer performances. The porosity either increases or decreases toward the heated wall following a parabolic function. Among the metal foam matrices of the same mass, the maximum heat transfer coefficient exists for the case in which the porosity decreases toward the heated wall (i.e., more metal near the wall). The heat transfer coefficients in such channels filled with a functionally graded metal foam matrix are found 20–50% higher than that expected from the increase in the effective thermal conductivity. Hence, functionally graded metal foam matrices are quite effective to achieve substantially high heat transfer coefficient with an acceptable increase in pressure drop.

References

1.
Kamiuto
,
K.
, and
Yee
,
S. S.
,
2005
, “
Heat Transfer Correlations for Open-Cellular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
947
953
.
2.
Albanakis
,
C.
,
Missirlis
,
D.
,
Michailidis
,
N.
,
Yakinthos
,
K.
,
Goulas
,
A.
,
Omar
,
H.
,
Tsipas
,
D.
, and
Granier
,
B.
,
2009
, “
Experimental Analysis of the Pressure Drop and Heat Transfer Through Metal Foams Used as Volumetric Receivers Under Concentrated Solar Radiation
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
246
252
.
3.
Mancin
,
S.
,
Diani
,
A.
,
Doretti
,
L.
,
Hooman
,
K.
, and
Rossetto
,
L.
,
2015
, “
Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Embedded in Copper Foams
,”
Int. J. Therm. Sci.
,
90
, pp.
79
89
.
4.
Di Giorgio
,
P.
,
Iasiello
,
M.
,
Viglione
,
A.
,
Mameli
,
M.
,
Filippeschi
,
S.
,
Di Marco
,
P.
,
Andreozzi
,
A.
, and
Bianco
,
N.
,
2017
, “
Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage
,”
J. Phys.: Conf. Ser.
,
796
(
1
), p.
012032
.
5.
Dukhan
,
N.
,
2013
,
Metal Foams: Fundamentals and Applications
,
DEStech Publications
, Lancaster, PA.
6.
Kaviany
,
M.
,
1985
, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
,
28
(
4
), pp.
841
858
.
7.
Nakayama
,
A.
,
Koyama
,
H.
, and
Kuwahara
,
F.
,
1988
, “
An Analysis on Forced Convection in a Channel Filled With a Brinkman-Darcy Porous Medium: Exact and Approximate Solutions
,”
Warme Stoffubertragung
,
23
(
5
), pp.
291
295
.
8.
Koizumi
,
M.
,
1997
, “
FGM Activities in Japan
,”
Composites, Part B
,
28
(
1–2
), pp.
1
4
.
9.
El-Wazery
,
M. S.
, and
El-Desouky
,
A. R.
,
2017
, “
A Review on Functionally Graded Ceramic-Metal Materials
,”
J. Mater. Environ. Sci.
,
6
(
5
), pp.
1369
1376
.https://www.jmaterenvironsci.com/Document/vol6/vol6_N5/162-JMES-1428-2015-EL-Wazery.pdf
10.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
11.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
12.
Quintard
,
M.
, and
Whitaker
,
S.
,
1993
, “
One and Two Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
465
.
13.
Cheng
,
P.
,
1978
, “
Heat Transfer in Geothermal Systems
,”
Adv. Heat Transfer
,
14
, pp.
1
105
.
14.
Nakayama
,
A.
,
1995
,
PC-Aided Numerical Heat Transfer and Convective Flow
, Vol.
17–72
,
CRC Press
,
Boca Raton, FL
, pp.
177
250
.
15.
Yang
,
C.
, and
Nakayama
,
A.
,
2010
, “
A Synthesis of Tortuosity and Dispersion in Effective Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3222
3230
.
16.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
,
1987
, “
Forced Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
653
662
.
17.
Yang
,
C.
,
Liu
,
W.
, and
Nakayama
,
A.
,
2009
, “
Forced Convective Heat Transfer Enhancement in a Tube With Its Core Partially Filled With a Porous Medium
,”
Open Transp. Phenom. J.
,
1
(
1
), pp.
1
6
.
18.
Yang
,
C.
,
Nakayama
,
A.
, and
Liu
,
W.
,
2012
, “
Heat Transfer Performance Assessment for Forced Convection in a Tube Partially Filled With a Porous Medium
,”
Int. J. Therm. Sci.
,
54
, pp.
98
108
.
19.
Zhu
,
H.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
,
Venkataraman
,
S.
, and
Blosser
,
M.
,
2004
, “
Optimization of Functionally Graded Metallic Foam Insulation Under Transient Heat Transfer Conditions
,”
Struct. Multidiscip. Optim.
,
28
(
5
), pp.
349
355
.
20.
Venkataraman
,
S.
,
Haftka
,
R. T.
,
Sankar
,
B. V.
,
Zhu
,
H.
, and
Blosser
,
M. L.
,
2004
, “
Optimal Functionally Graded Metallic Foam Thermal Insulation
,”
AIAA J.
,
42
(
11
), pp.
2355
2363
.
21.
Chen
,
W.-L.
,
Chou
,
H.-M.
, and
Yang
,
Y.-C.
,
2017
, “
Inverse Estimation of the Unknown Base Heat Flux in Irregular Fins Made of Functionally Graded Materials
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
157
163
.
22.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
, pp.
116
128
.
23.
Chen
,
X.
,
Xia
,
X. L.
,
Meng
,
X. L.
, and
Dong
,
X. H.
,
2015
, “
Thermal Performance Analysis on a Volumetric Solar Receiver With Double-Layer Ceramic Foam
,”
Energy Convers. Manage.
,
97
, pp.
282
289
.
24.
Arbak
,
A.
,
Dukhan
,
N.
,
Bag˘ci
,
Ö.
, and
Özdemir
,
M.
,
2017
, “
Influence of Pore Density on Thermal Development in Open-Cell Metal Foam
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
180
188
.
25.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2014
, “
Metal Foam Hydrodynamics: Flow Regimes From Pre-Darcy to Turbulent
,”
Int. J. Heat Mass Transfer
,
77
, pp.
114
123
.
26.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.
27.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2017
, “
Developing Thermal Flow in Open-Cell Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
129
137
.
28.
Kuwahara
,
F.
,
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
,
2011
, “
Exact Solutions for a Thermal Nonequilibrium Model of Fluid Saturated Porous Media Based on an Effective Porosity
,”
ASME J. Heat Transfer
,
133
(
11
), p.
112602
.
29.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
,
2006
, “
An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
(
25
), pp.
81
96
.
30.
Zhang
,
W.
,
Li
,
W.
, and
Nakayama
,
A.
,
2015
, “
An Analytical Consideration of Steady-State Forced Convection Within a Nanofluid-Saturated Metal Foam
,”
J. Fluid Mech.
,
769
, pp.
590
620
.
31.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
32.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer
,
130
(
2
), p.
022503
.
33.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,” Ph.D. thesis, University of Colorado, Denver, CO.
34.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
,
The National Press
,
Palo Alto, CA
.
You do not currently have access to this content.