The purpose of the new formulas, Cml, CmlK, and CmlY, which express the slowest char combustion rate, is to show the controlling mechanism of single coal burning. Oxygen diffusion through the boundary layer (as a result of releasing volatile matter from coal) to the char surface is the slowest step rate and can also represent as the rate determining. This step has not yet been taken into account in the literature and may effect incomparable decisions between numerical and experimental results of coal combustion studies. In the 1920s, Wilhelm Nusselt found the coal combustion equation for a single coal, which is based on initial coal diameter, and its burning time, or Nusselt square law (NSL). Also, the burning constant in NSL expressed oxygen partial pressure and the ambient temperature level. Nevertheless, recent studies according to char combustion have explained the effect of coal density on char combustion. Consequently, to help understand the slowest rate of char combustion, NSL as well as ordinary char combustion equations can be used together to establish the rate-determining factor. For this purpose, in this study, the slowest step of the char reaction rate is given as “Cml” of stable position for single coal particle, “CmlK” and “CmlY” for a coal particle in a motion.

References

1.
Williams
,
A.
,
1994
, “
The Diagnosis of Concerted Organic Mechanisms
,”
Chem. Soc. Rev.
,
23
(
2
), pp.
93
100
.
2.
Sposito
,
G.
,
2005
,
The Surface Chemistry of Natural Particles
,
Oxford University Press
,
New York
.
3.
Cho
,
K.-B.
,
Hirao
,
H.
,
Shaik
,
S.
, and
Nam
,
W.
,
2016
, “
To Rebound or Dissociate? This Is the Mechanistic Question in C-H Hydroxylation by Heme and Nonheme Metal-Oxo Complexes
,”
Chem. Soc. Rev.
,
45
(
5
), pp.
1197
1210
.
4.
Guo
,
Z.
,
Liu
,
B.
,
Zhang
,
Q.
,
Deng
,
W.
,
Wang
,
Y.
, and
Yang
,
Y.
,
2014
, “
Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry
,”
Chem. Soc. Rev.
,
43
(
10
), pp.
3480
3524
.
5.
Jiang
,
B.
,
Yang
,
M.
,
Xie
,
D.
, and
Guo
,
H.
,
2016
, “
Quantum Dynamics of Polyatomic Dissociative Chemisorption on Transition Metal Surfaces: Mode Specificity and Bond Selectivity
,”
Chem. Soc. Rev.
,
45
(
13
), pp.
3621
3640
.
6.
Sanna
,
A.
,
Uibu
,
M.
,
Caramanna
,
G.
,
Kuusik
,
R.
, and
Maroto-Valer
,
M. M.
,
2014
, “
A Review of Mineral Carbonation Technologies to Sequester CO2
,”
Chem. Soc. Rev.
,
43
(
23
), pp.
8049
8080
.
7.
J. M.
,
Winterbottom
, , and
M.
K
,
1999
,
Reactor Design for Chemical Engineers
,
Taylor & Francis Ltd
,
Cheltenham, UK
.
8.
Lv
,
H.
,
Geletii
,
Y. V.
,
Zhao
,
C.
,
Vickers
,
J. W.
,
Zhu
,
G.
,
Luo
,
Z.
,
Song
,
J.
,
Lian
,
T.
,
Musaev
,
D. G.
, and
Hill
,
C. L.
,
2012
, “
Polyoxometalate Water Oxidation Catalysts and the Production of Green Fuel
,”
Chem. Soc. Rev.
,
41
(
22
), pp.
7572
7589
.
9.
Pakhare
,
D.
, and
Spivey
,
J.
,
2014
, “
A Review of Dry (CO2) Reforming of Methane Over Noble Metal Catalysts
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7813
7837
.
10.
Yan
,
L.
,
Zheng
,
Y. B.
,
Zhao
,
F.
,
Li
,
S.
,
Gao
,
X.
,
Xu
,
B.
,
Weiss
,
P. S.
, and
Zhao
,
Y.
,
2012
, “
Chemistry and Physics of a Single Atomic Layer: Strategies and Challenges for Functionalization of Graphene and Graphene-Based Materials
,”
Chem. Soc. Rev.
,
41
(
1
), pp.
97
114
.
11.
Pratt
,
L.
, and
Smoot
,
L. D.
,
Pulverized-Coal Combustion and Gasification Theory and Applications for Continuous Flow Processes
,
Springer Science+Business Media, LLC
, New York.
12.
Yin
,
C.
,
2016
, “
Effects of Moisture Release and Radiation Properties in Pulverized Fuel Combustion: A CFD Modelling Study
,”
Fuel
,
165
, pp.
252
259
.
13.
Lázaro
,
M. J.
,
Ibarra
,
J.
,
Moliner
,
R.
,
González de Andrés
,
A.
, and
Thomas
,
K. M.
,
1996
, “
The Release of Nitrogen During the Combustion of Coal Chars: The Role of Volatile Matter and Surface Area
,”
Fuel
,
75
(
8
), pp.
1014
1024
.
14.
Chen
,
W.-H.
,
Du
,
S.-W.
, and
Yang
,
T.-H.
,
2007
, “
Volatile Release and Particle Formation Characteristics of Injected Pulverized Coal in Blast Furnaces
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2025
2033
.
15.
Li
,
Q.
,
Jiang
,
J.
,
Zhang
,
Q.
,
Zhou
,
W.
,
Cai
,
S.
,
Duan
,
L.
,
Ge
,
S.
, and
Hao
,
J.
,
2016
, “
Influences of Coal Size, Volatile Matter Content, and Additive on Primary Particulate Matter Emissions From Household Stove Combustion
,”
Fuel
,
182
, pp.
780
787
.
16.
Tian
,
J.
,
Ni
,
H.
,
Cao
,
J.
,
Han
,
Y.
,
Wang
,
Q.
,
Wang
,
X.
,
Chen
,
L. W. A.
,
Chow
,
J. C.
,
Watson
,
J. G.
,
Wei
,
C.
,
Sun
,
J.
,
Zhang
,
T.
, and
Huang
,
R.
,
2017
, “
Characteristics of Carbonaceous Particles From Residential Coal Combustion and Agricultural Biomass Burning in China
,”
Atmos. Pollut. Res.
,
8
(
3
), pp.
521
527
.
17.
De Girolamo
,
A.
,
Lameu
,
N. K.
,
Zhang
,
L.
, and
Ninomiya
,
Y.
,
2017
, “
Ignitability and Combustibility of Yallourn Pyrolysis Char Under Simulated Blast Furnace Conditions
,”
Fuel Process. Technol.
,
156
, pp.
113
123
.
18.
Hoyer
,
E.
,
1988
, “
H. H. Schobert. Coal—The Energy Source of the Past and the Future. American Chemical Society, Washington DC, 1987
,”
Crystal Res. Technol.
,
23
(
7
), p. 944.
19.
Köser
,
J.
,
Becker
,
L. G.
,
Goßmann
,
A.-K.
,
Böhm
,
B.
, and
Dreizler
,
A.
,
2017
, “
Investigation of Ignition and Volatile Combustion of Single Coal Particles Within Oxygen-Enriched Atmospheres Using High-Speed OH-PLIF
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2103
2111
.
20.
van der Honing
,
G.
,
1995
, “
Topics Research Fundamentals
,”
Coal Sci. Technol.
,
22
, pp.
317
333
.
21.
Agarwal
,
P. K.
, and
Pedler
,
I.
,
1986
, “
Drying, Devolatilisation and Volatile Combustion for Single Coal Particles: A Pseudo Steady State Approach
,”
Fuel
,
65
(
5
), pp.
640
643
.
22.
Fuente-Cuesta
,
A.
,
Jiang
,
C.
,
Arenillas
,
A.
, and
Irvine
,
J. T. S.
,
2016
, “
Role of Coal Characteristics in the Electrochemical Behaviour of Hybrid Direct Carbon Fuel Cells
,”
Energy Environ. Sci.
,
9
(
9
), pp.
2868
2880
.
23.
Xiang
,
Y.
,
Lu
,
S.
, and
Jiang
,
S. P.
,
2012
, “
Layer-by-Layer Self-Assembly in the Development of Electrochemical Energy Conversion and Storage Devices From Fuel Cells to Supercapacitors
,”
Chem. Soc. Rev.
,
41
(
21
), pp.
7291
7321
.
24.
Schobert
,
H. H.
,
1987
,
The Energy Source of the Past and Future
,
H. H.
Schobert
, ed.,
American Chemical Society
, Washington, DC, pp.
59
93
.
25.
Liu
,
X.
,
Chen
,
L.
,
Qin
,
X.
, and
Sun
,
F.
,
2015
, “
Exergy Loss Minimization for a Blast Furnace With Comparative Analyses for Energy Flows and Exergy Flows
,”
Energy
,
93
(
Pt. 1
), pp.
10
19
.
26.
Çelik
,
M. S.
, and
Yildirim
,
I.
,
2000
, “
A New Physical Process for Desulfurization of Low-Rank Coals
,”
Fuel
,
79
(
13
), pp.
1665
1669
.
27.
Kleyn
,
A. W.
,
2003
, “
Molecular Beams and Chemical Dynamics at Surfaces
,”
Chem. Soc. Rev.
,
32
(
2
), pp.
87
95
.
28.
Chadwick
,
H.
, and
Beck
,
R. D.
,
2016
, “
Quantum State Resolved Gas-Surface Reaction Dynamics Experiments: A Tutorial Review
,”
Chem. Soc. Rev.
,
45
(
13
), pp.
3576
3594
.
29.
Huang
,
W.
,
Sun
,
G.
, and
Cao
,
T.
,
2017
, “
Surface Chemistry of Group IB Metals and Related Oxides
,”
Chem. Soc. Rev.
,
46
(
7
), pp.
1977
2000
.
30.
Wang
,
C.
,
Shao
,
H.
,
Lei
,
M.
,
Wu
,
Y.
, and
Jia
,
L.
,
2016
, “
Effect of the Coupling Action Between Volatiles, Char and Steam on Isothermal Combustion of Coal Char
,”
Appl. Therm. Eng.
,
93
, pp.
438
445
.
31.
Yohe, G. R., 1958, “
Oxidation of Coal
,”
Board of Natural Resources and conservation, Department of Registration and Education
, Urbana, IL.
32.
Roberts
,
M. W.
,
1996
, “
The Role of Short-Lived Oxygen Transients and Precursor States in the Mechanisms of Surface Reactions; a Different View of Surface Catalysis
,”
Chem. Soc. Rev.
,
25
(
6
), pp.
437
445
.
33.
Linares
,
M.
,
Minoia
,
A.
,
Brocorens
,
P.
,
Beljonne
,
D.
, and
Lazzaroni
,
R.
,
2009
, “
Expression of Chirality in Molecular Layers at Surfaces: Insights From Modelling
,”
Chem. Soc. Rev.
,
38
(
3
), pp.
806
816
.
34.
Krevelen
,
D. W. V.
,
1981
, “
Coal Typology-Chemistry-Physics-Constitution
,”
Coal Science and Technology
,
L. L.
Anderson
, ed.,
Elsevier
,
Amsterdam, The Netherlands
.
35.
Yang
,
X.
, and
Wodtke
,
A. M.
,
2016
, “
Surface Reaction Dynamics
,”
Chem. Soc. Rev.
,
45
(
13
), pp.
3573
3575
.
36.
Jia
,
H.-P.
, and
Quadrelli
,
E. A.
,
2014
, “
Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen
,”
Chem. Soc. Rev.
,
43
(
17
), pp.
547
564
.
37.
Vimont
,
A.
,
Thibault-Starzyk
,
F.
, and
Daturi
,
M.
,
2010
, “
Analysing and Understanding the Active Site by IR Spectroscopy
,”
Chem. Soc. Rev.
,
39
(
12
), pp.
4928
4950
.
38.
Smith
,
J. R.
,
2013
,
Theory of Chemisorption
,
Springer
,
Berlin Heidelberg
.
39.
Cui
,
G.
,
Wang
,
J.
, and
Zhang
,
S.
,
2016
, “
Active Chemisorption Sites in Functionalized Ionic Liquids for Carbon Capture
,”
Chem. Soc. Rev.
,
45
(
15
), pp.
4307
4339
.
40.
Chaemchuen
,
S.
,
Kabir
,
N. A.
,
Zhou
,
K.
, and
Verpoort
,
F.
,
2013
, “
Metal-Organic Frameworks for Upgrading Biogas Via CO2 Adsorption to Biogas Green Energy
,”
Chem. Soc. Rev.
,
42
(
24
), pp.
9304
9332
.
41.
Li
,
Z.
,
Zhang
,
Y.
,
Jing
,
X.
,
Zhang
,
Y.
, and
Chang
,
L.
,
2016
, “
Insight Into the Intrinsic Reaction of Brown Coal Oxidation at Low Temperature: Differential Scanning Calorimetry Study
,”
Fuel Process. Technol.
,
147
, pp.
64
70
.
42.
Kural
,
O. C.
,
1994
,
Coal: Resources, Properties, Utilization, Pollution
,
Istanbul Technical University
, Istanbul, Turkey.
43.
Tran
,
N. H.
, and
Kannangara
,
G. S. K.
,
2013
, “
Conversion of Glycerol to Hydrogen Rich Gas
,”
Chem. Soc. Rev.
,
42
(
24
), pp.
9454
9479
.
44.
Xu
,
T.
,
Xie
,
Q.
, and
Kang
,
Y.
, “
Heat Effect of the Oxygen-Containing Functional Groups in Coal During Spontaneous Combustion Processes
,”
Adv. Powder Technol.
,
28
, pp. 1841–1848.
45.
O'Neil
,
M.
, and
Phillips
,
J.
,
1987
, “
Differential Microcalorimetric Study of Chemical Adsorption Processes on a Microporous Solid
,”
J. Phys. Chem.
,
91
(
11
), pp.
2867
2874
.
46.
Vasireddy
,
S.
,
Morreale
,
B.
,
Cugini
,
A.
,
Song
,
C.
, and
Spivey
,
J. J.
,
2011
, “
Clean Liquid Fuels From Direct Coal Liquefaction: Chemistry, Catalysis, Technological Status and Challenges
,”
Energy Environ. Sci.
,
4
(
2
), pp.
311
345
.
47.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernandez
,
J. R.
,
Ferrari
,
M.-C.
,
Gross
,
R.
,
Hallett
,
J. P.
,
Haszeldine
,
R. S.
,
Heptonstall
,
P.
,
Lyngfelt
,
A.
,
Makuch
,
Z.
,
Mangano
,
E.
,
Porter
,
R. T. J.
,
Pourkashanian
,
M.
,
Rochelle
,
G. T.
,
Shah
,
N.
,
Yao
,
J. G.
, and
Fennell
,
P. S.
,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
), pp.
130
189
.
48.
Cornia
,
A.
,
Mannini
,
M.
,
Sainctavit
,
P.
, and
Sessoli
,
R.
,
2011
, “
Chemical Strategies and Characterization Tools for the Organization of Single Molecule Magnets on Surfaces
,”
Chem. Soc. Rev.
,
40
(
6
), pp.
3076
3091
.
49.
Wang
,
L-y.
,
Xu
,
Y-L.
,
Jiang
,
S-G.
,
Yu
,
M-G.
,
Chu
,
T-X.
,
Zhang
,
W-Q.
,
Wu
,
Z-y.
, and
Kou
,
L-W.
,
2012
, “
Imidazolium Based Ionic Liquids Affecting Functional Groups and Oxidation Properties of Bituminous Coal
,”
Saf. Sci.
,
50
(
7
), pp.
1528
1534
.
50.
McManus
,
T. R.
,
1991
, “
Petroleum and Coal
,”
Anal. Chem.
,
63
(
12
), pp.
48R
64R
.
51.
Sánchez
,
A.
, and
Mondragón
,
F.
,
2007
, “
Role of the Epoxy Group in the Heterogeneous CO2 Evolution in Carbon Oxidation Reactions
,”
J. Phys. Chem. C
,
111
(
2
), pp.
612
617
.
52.
Roberts
,
M. W.
,
1977
, “
Tilden Lecture. New Perspectives in Surface Chemistry and Catalysis
,”
Chem. Soc. Rev.
,
6
(
4
), p.
373
.
53.
Qi
,
G.
,
Wang
,
D.
,
Zheng
,
K.
,
Xu
,
J.
,
Qi
,
X.
, and
Zhong
,
X.
,
2015
, “
Kinetics Characteristics of Coal Low-Temperature Oxidation in Oxygen-Depleted Air
,”
J. Loss Prev. Process Ind.
,
35
, pp.
224
231
.
54.
Li
,
B.
,
Chen
,
G.
,
Zhang
,
H.
, and
Sheng
,
C.
,
2014
, “
Development of Non-Isothermal TGA–DSC for Kinetics Analysis of Low Temperature Coal Oxidation Prior to Ignition
,”
Fuel
,
118
, pp.
385
391
.
55.
Kus
,
J.
,
Misz-Kennan
,
M.
, and
Iccp
,
2017
, “
Coal Weathering and Laboratory (Artificial) Coal Oxidation
,”
Int. J. Coal Geol.
,
171
, pp.
12
36
.
56.
GündüzÖkten
,
V. D.
,
1994
,
Coal Resources, Properties, Utilization, Pollution
,
O.
Kural
, ed.,
Özgün A.Ş
,
Istanbul, Turkey
, p.
491
.
57.
Marinov
,
V. N.
,
1977
, “
Self-Ignition and Mechanisms of Interaction of Coal With Oxygen at Low Temperatures. 2. Changes in Weight and Thermal Effects on Gradual Heating of Coal in Air in the Range 20–300 °C
,”
Fuel
,
56
(
2
), pp.
158
164
.
58.
Gentzis
,
T.
,
Goodarzi
,
F.
, and
McFarlane
,
R. A.
,
1992
, “
Molecular Structure of Reactive Coals During Oxidation, Carbonization and Hydrogenation—An Infrared Photoacoustic Spectroscopic and Optical Microscopic Study
,”
Org. Geochemistry
,
18
(
3
), pp.
249
258
.
59.
Cronauer
,
D. C.
,
Ruberto
,
R. G.
,
Silver
,
R. S.
,
Jenkins
,
R. G.
,
Ismail
,
I. M. K.
, and
Schlyer
,
D.
,
1983
, “
Liquefaction of Partially Dried and Oxidized Coals
,”
Fuel
,
62
(
10
), pp.
1116
1123
.
60.
Bouwman
,
R.
, and
Freriks
,
I. L. C.
,
1980
, “
Low-Temperature Oxidation of a Bituminous Coal. Infrared Spectroscopic Study of Samples From a Coal Pile
,”
Fuel
,
59
(
5
), pp.
315
322
.
61.
Goodarzi
,
F.
,
1986
, “
Optical Properties of Oxidized Resinite
,”
Fuel
,
65
(
2
), pp.
260
265
.
62.
Weaver
,
J. F.
,
Hakanoglu
,
C.
,
Antony
,
A.
, and
Asthagiri
,
A.
,
2014
, “
Alkane Activation on Crystalline Metal Oxide Surfaces
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7536
7547
.
63.
Clemens
,
A. H.
,
Matheson
,
T. W.
, and
Rogers
,
D. E.
,
1991
, “
Low Temperature Oxidation Studies of Dried New Zealand Coals
,”
Fuel
,
70
(
2
), pp.
215
221
.
64.
Manskaya
,
S. M.
, and
Drozdova
,
T. V.
,
1968
, “
Chapter 3—Organic Constituents of Coal and Their Origin
,”
Geochem. Org. Subst., Pergamon
, pp.
92
131
.
65.
Ivanov
,
S. K.
,
Rouschev
,
D. D.
, and
Markova
,
K. I.
,
1980
, “
Study of Initial Oxidation Processes in Bituminous Coals and Anthracites by Manometric Methods
,”
Fuel
,
59
(
4
), pp.
273
274
.
66.
Vantelon
,
J. P.
,
Breillat
,
C.
,
Gaboriaud
,
F.
, and
Alaoui-Sosse
,
A.
,
1990
, “
Thermal Degradation of Timahdit Oil Shales: Behaviour in Inert and Oxidizing Environments
,”
Fuel
,
69
(
2
), pp.
211
215
.
67.
Senneca
,
O.
, and
Salatino
,
P.
,
2006
, “
Overlapping of Heterogeneous and Purely Thermally Activated Solid-State Processes in the Combustion of a Bituminous Coal
,”
Combust. Flame
,
144
(
3
), pp.
578
591
.
68.
Khatami
,
R.
, and
Levendis
,
Y. A.
,
2016
, “
An Overview of Coal Rank Influence on Ignition and Combustion Phenomena at the Particle Level
,”
Combust. Flame
,
164
, pp.
22
34
.
69.
Smith
,
P. J.
,
Sowa
,
W. A.
, and
Hedman
,
P. O.
,
1990
, “
Furnace Design Using Comprehensive Combustion Models
,”
Combust. Flame
,
79
(
2
), pp.
111
121
.
70.
Borghi
,
G.
,
Sarofim
,
A. F.
, and
Beér
,
J. M.
,
1985
, “
A Model of Coal Devolatilization and Combustion in Fluidized Beds
,”
Combust. Flame
,
61
(
1
), pp.
1
16
.
71.
Anagnostopoulos
,
J. S.
,
Sargianos
,
N. P.
, and
Bergeles
,
G.
,
1993
, “
The Prediction of Pulverized Greek Lignite Combustion in Axisymmetric Furnaces
,”
Combust. Flame
,
92
(
3
), pp.
209
221
.
72.
Helble
,
J. J.
, and
Sarofim
,
A. F.
,
1989
, “
Influence of Char Fragmentation on Ash Particle Size Distributions
,”
Combust. Flame
,
76
(
2
), pp.
183
196
.
73.
Therssen
,
E.
,
Gourichon
,
L.
, and
Delfosse
,
L.
,
1995
, “
Devolatilization of Coal Particles in a Flat Flame—Experimental and Modeling Study
,”
Combust. Flame
,
103
(
1–2
), pp.
115
128
.
74.
Ma
,
L.
, and
Mitchell
,
R.
,
2009
, “
Modeling Char Oxidation Behavior Under Zone II Burning Conditions at Elevated Pressures
,”
Combust. Flame
,
156
(
1
), pp.
37
50
.
75.
Iavarone
,
S.
,
Galletti
,
C.
,
Contino
,
F.
,
Tognotti
,
L.
,
Smith
,
P. J.
, and
Parente
,
A.
,
2016
, “
CFD-Aided Benchmark Assessment of Coal Devolatilization One-Step Models in Oxy-Coal Combustion Conditions
,”
Fuel Process. Technol.
,
154
, pp.
27
36
.
76.
Annamalai
,
K.
,
Ryan
,
W.
, and
Dhanapalan
,
S.
,
1994
, “
Interactive Processes in Gasification and Combustion—Part III: Coal/Char Particle Arrays, Streams and Clouds
,”
Prog. Energy Combust. Sci.
,
20
(
6
), pp.
487
618
.
77.
Eatough
,
C. N.
, and
Douglas Smoot
,
L.
,
1996
, “
Devolatilization of Large Coal Particles at High Pressure
,”
Fuel
,
75
(
13
), pp.
1601
1605
.
78.
Hees
,
J.
,
Zabrodiec
,
D.
,
Massmeyer
,
A.
,
Pielsticker
,
S.
,
Gövert
,
B.
,
Habermehl
,
M.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2016
, “
Detailed Analyzes of Pulverized Coal Swirl Flames in Oxy-Fuel Atmospheres
,”
Combust. Flame
,
172
, pp.
289
301
.
79.
Prins
,
W.
,
Siemons
,
R.
,
Van Swaaij
,
W. P. M.
, and
Radovanovic
,
M.
,
1989
, “
Devolatilization and Ignition of Coal Particles in a Two-Dimensional Fluidized Bed
,”
Combust. Flame
,
75
(
1
), pp.
57
79
.
80.
Wodtke
,
A. M.
,
2016
, “
Electronically Non-Adiabatic Influences in Surface Chemistry and Dynamics
,”
Chem. Soc. Rev.
,
45
(
13
), pp.
3641
3657
.
81.
Leckner
,
B.
, and
Werther
,
J.
,
2000
, “
Scale-Up of Circulating Fluidized Bed Combustion
,”
Energy Fuels
,
14
(
6
), pp.
1286
1292
.
82.
Zygourakis
,
K.
,
1993
, “
Effect of Pyrolysis Conditions on the Macropore Structure of Coal-Derived Chars
,”
Energy Fuels
,
7
(
1
), pp.
33
41
.
83.
Essenhigh
,
R.
,
1968
, “
Feature. Incineration—A Practical and Scientific Approach
,”
Environ. Sci. Technol.
,
2
(
7
), pp.
524
534
.
84.
Beeston, G., and Essenhigh, R. H., 1963, “
Kinetics of Coal Combustion: The Influence of Oxygen Concentration on the Burning-out Times of Single Particles
,”
J. Phys. Chem.
,
67
, pp. 1349–1355.
85.
Springer Science & Business Media,
1987
,
Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion
,
Springer Science + Business Media
, Dordrecht, The Netherlands.
86.
Tillman
,
D.
,
The Combustion of Solid Fuels and Wastes
,
Academic Press
, Washington, DC.
87.
Reza Sharifi
,
S. V. P
, and
A. W.
Scaroni
,
2000
,
Kirk-Othmer Encyclopedia of Chemical Technology
, Vol. 7, Wiley, Hoboken, NJ, pp. 435–479.
88.
Bennaceur
,
K.
,
2014
, “
Chapter 26—CO2 Capture and Sequestration A2—Letcher, Trevor M
,”
Future Energy
, 2nd ed.,
Elsevier
,
Boston
, pp.
583
611
.
89.
Beale
,
A. M.
,
Gao
,
F.
,
Lezcano-Gonzalez
,
I.
,
Peden
,
C. H. F.
, and
Szanyi
,
J.
,
2015
, “
Recent Advances in Automotive Catalysis for NOx Emission Control by Small-Pore Microporous Materials
,”
Chem. Soc. Rev.
,
44
(
48
), pp.
7371
7405
.
90.
Miller
,
B. G.
,
2011
,
Clean Coal Engineering Technology
,
B. G.
Miller
, ed.,
Butterworth-Heinemann
, Oxford, UK.
91.
Denby, B., 1989, “Continuous Surface Mining; Equipment, Operation and Design, T. G. Rozgonyi, T. S. Golosinski (Eds.), Balkema, Englewood Cliffs, N. J. (1988), p. 225, ISBN: 90 6191 8588,”
Min. Sci. Technol.
,
9
(2), p. 237.
92.
Bortz
,
S.
,
1983
, “
Coal Injection Into the Blast Furnace
,” Commission of the European Communities, Luxembourg, Europe, Report No. EUR8544.
93.
Singer
,
M. J.
,
2002
, “
Practice Problems: Porosity and Bulk Density
,” Davis, CA, accessed June 30, 2018, http://lawr.ucdavis.edu/classes/SSC100/probsets/pset01.html
94.
Holman
,
J. P.
,
1989
,
Heat Transfer
,
McGraw-Hill
, New York.
95.
Kryjak
,
M.
,
Dennis
,
J.
, and
Ridler
,
G.
,
2017
, “
NOx Reduction Using Advanced Techniques in a 175MWth Multi-Fuel Corner-Fired Boiler
,”
Energy Procedia
,
120
, pp.
689
696
.
96.
Bonefacic
,
I.
,
Frankovic
,
B.
, and
Kazagic
,
A.
,
2015
, “
Cylindrical Particle Modelling in Pulverized Coal and Biomass Co-Firing Process
,”
Appl. Therm. Eng.
,
78
, pp.
74
81
.
97.
Jones
,
J. M.
,
Patterson
,
P. M.
,
Pourkashanian
,
M.
,
Williams
,
A.
,
Arenillas
,
A.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
1999
, “
Modelling NOx Formation in Coal Particle Combustion at High Temperature: An Investigation of the Devolatilisation Kinetic Factors
,”
Fuel
,
78
(
10
), pp.
1171
1179
.
98.
Fluent
,
2005
, “
Tutorial 13. Using the Non-Premixed Combustion Model
,” Fluent Inc., Hanover, NH.
99.
Ledesma
,
E. B.
,
Nelson
,
P. F.
, and
Mackie
,
J. C.
,
1998
, “
The Formation of Nitrogen Species and Oxygenated PAH during the Combustion of Coal Volatiles
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1687
1693
.
100.
Förtsch
,
D.
,
Kluger
,
F.
,
Schnell
,
U.
,
Spliethoff
,
H.
, and
Hein
,
K. R. G.
,
1998
, “
A Kinetic Model for the Prediction of No Emissions From Staged Combustion of Pulverized Coal
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
3037
3044
.
101.
van der Lans
,
R. P.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
1997
, “
Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners
,”
Prog. Energy Combust. Sci.
,
23
(
4
), pp.
349
377
.
102.
Smoot
,
L. D.
,
1997
, “
A Decade of Combustion Research
,”
Prog. Energy Combust. Sci.
,
23
(
3
), pp.
203
232
.
103.
Muzio
,
L. J.
, and
Quartucy
,
G. C.
,
1997
, “
Implementing NOx Control: Research to Application
,”
Prog. Energy Combust. Sci.
,
23
(
3
), pp.
233
266
.
104.
Deng
,
L.
,
Jin
,
X.
,
Zhang
,
Y.
, and
Che
,
D.
,
2016
, “
Release of Nitrogen Oxides During Combustion of Model Coals
,”
Fuel
,
175
, pp.
217
224
.
105.
Alganash
,
B.
,
Paul
,
M. C.
,
Watson
,
I. A.
,
2015
, “
Numerical Investigation of the Heterogeneous Combustion Processes of Solid Fuels
,”
Fuel
,
141
, pp.
236
249
.
You do not currently have access to this content.