Numerical study of nanofluid jet impingement cooling of a partially elastic isothermal hot surface was conducted with finite element method. The impingement surface was made partially elastic, and the effects of Reynolds number (between 25 and 200), solid particle volume fraction (between 0.01 and 0.04), elastic modulus of isothermal hot surface (between 104 and 106), size of the flexible part (between 7.5 w and 25 w), and nanoparticle type (spherical, cylindrical, blade) on the fluid flow and heat transfer characteristics were analyzed. It was observed that average Nusselt number enhances for higher Reynolds number, higher values of elastic modulus of flexible wall, smaller size of elastic part, and higher nanoparticle solid volume fraction and for cylindrical shaped particles. It is possible to change the maximum Nusselt number by 50.58% and 33% by changing the elastic modulus of the hot wall and size of elastic part whereas average Nusselt number changes by only 9.33% and 6.21%. The discrepancy between various particle shapes is higher for higher particle volume fraction.

References

1.
Webb
,
B.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(2), pp.
106
115
.
3.
Oztop
,
H. F.
,
Varol
,
Y.
,
Koca
,
A.
,
Firat
,
M.
,
Turan
,
B.
, and
Metin
,
I.
,
2011
, “
Experimental Investigation of Cooling of Heated Circular Disc Using Inclined Circular Jet
,”
Int. Commun. Heat Mass Transfer
,
38
(7), pp.
990
1001
.
4.
Sharif
,
M.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(2–3), pp.
532
540
.
5.
Beaubert
,
F.
, and
Viazzo
,
S.
,
2003
, “
Large Eddy Simulation of Plane Turbulent Impinging Jets at Moderate Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
(4), pp.
512
519
.
6.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(6), pp.
1237
1248
.
7.
Chattopadhyay
,
H.
, and
Saha
,
S.
,
2003
, “
Turbulent Flow and Heat Transfer From a Slot Jet Impinging on a Moving Plate
,”
Int. J. Heat Fluid Flow
,
24
(5), pp.
685
697
.
8.
Manca, O., Ricci, D., Nardini, S., and Lorenzo, G., 2016, “
Thermal and Fluid Dynamic Behaviors of Confined Laminar Impinging Slot Jets With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
70
, pp. 15–26.
9.
Isman
,
M. K.
,
Morris
,
P. J.
, and
Can
,
M.
,
2016
, “
Investigation of Laminar to Turbulent Transition Phenomena Effects on Impingement Heat Transfer
,”
Heat Mass Transfer
,
52
(10), pp.
2027
2036
.
10.
Salamah
,
S.
, and
Kaminski
,
D. A.
,
2005
, “
Modeling of Turbulent Heat Transfer From an Array of Submerged Jets Impinging on a Solid Surface
,”
Numer. Heat Transfer Part A
,
48
(4), pp.
315
337
.
11.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cuewater Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.
12.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Beche
,
A. L.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(2), pp.
401
411
.
13.
Rehman
,
M. M. U.
,
Qu
,
Z.
,
Fu
,
R.
, and
Xu
,
H.
,
2017
, “
Numerical Study on Free-Surface Jet Impingement Cooling With Nanoencapsulated Phase-Change Material Slurry and Nanofluid
,”
Int. J. Heat Mass Transfer
,
109
, pp.
312
325
.
14.
Avramenko
,
A. A.
,
Shevchuk
,
I. V.
,
Abdallah
,
S.
,
Blinov
,
D. G.
, and
Tyrinov
,
A. I.
,
2017
, “
Self-Similar Analysis of Fluid Flow, Heat, and Mass Transfer at Orthogonal Nanofluid Impingement Onto a Flat Surface
,”
Phys. Fluids
,
29
(5), p.
052005
.
15.
Avramenko
,
A. A.
,
Blinov
,
D. G.
, and
Shevchuk
,
I. V.
,
2011
, “
Self-Similar Analysis of Fluid Flow and Heat-Mass Transfer of Nanofluids in Boundary Layer
,”
Phys. Fluids
,
23
(8), p.
082002
.
16.
Hasan
,
H. A.
,
Sopian
,
K.
,
Jaaz
,
A. H.
, and
Al-Shamani
,
A. N.
,
2017
, “
Experimental Investigation of Jet Array Nanofluids Impingement in Photovoltaic/Thermal Collector
,”
Sol. Energy
,
144
, pp.
321
334
.
17.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2017
, “
Effects of Nanoparticle Shape on Slot-Jet Impingement Cooling of a Corrugated Surface With Nanofluids
,”
J. Therm. Sci. Eng. Appl.
,
9
(2), p.
021016
.
18.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2017
, “
Mixed Convection in a Partially Heated Triangular Cavity Filled With Nanofluid Having a Partially Flexible Wall and Internal Heat Generation
,”
J. Taiwan Inst. Chem. Eng.
,
70
, pp.
168
178
.
19.
Khanafer
,
K.
,
2014
, “
Comparison of Flow and Heat Transfer Characteristics in a Lid-Driven Cavity Between Flexible and Modified Geometry of a Heated Bottom Wall
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1032
1041
.
20.
Al-Amiri
,
A.
, and
Khanafer
,
K.
,
2011
, “
Fluid-Structure Interaction Analysis of Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Flexible Bottom Wall
,”
Int. J. Heat Mass Transfer
,
54
(17–18), pp.
3826
3836
.
21.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2016
, “
Natural Convection in a Flexible Sided Triangular Cavity With Internal Heat Generation Under the Effect of Inclined Magnetic Field
,”
J. Magn. Magn. Mater.
,
417
, pp.
327
337
.
22.
Selimefendigil
,
F.
,
Oztop
,
H. F.
, and
Chamkha
,
A. J.
,
2017
, “
Fluid–Structure-Magnetic Field Interaction in a Nanofluid Filled Lid-Driven Cavity With Flexible Side Wall
,”
Eur. J. Mech. B/Fluids
,
61
(Pt. 1), pp.
77
85
.
23.
Ghalambaz
,
M.
,
Jamesahar
,
E.
,
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2017
, “
Fluid-Structure Interaction Study of Natural Convection Heat Transfer Over a Flexible Oscillating Fin in a Square Cavity
,”
Int. J. Therm. Sci.
,
111
, pp.
256
273
.
24.
Jamesahar
,
E.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2016
, “
Fluid-Solid Interaction in Natural Convection Heat Transfer in a Square Cavity With a Perfectly Thermal-Conductive Flexible Diagonal Partition
,”
Int. J. Heat Mass Transfer
,
100
, pp.
303
319
.
25.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
(13), pp.
2652
2661
.
26.
Maxwell
,
J.
,
1873
,
A Treatise on Electricity and Magnetism
,
Oxford University Press
, Cambridge, UK.
27.
Vajjha
,
R.
, and
Das
,
D.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(21–22), pp.
4675
4682
.
28.
Timofeeva
,
E.
,
Routbort
,
J.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(1), p.
014304
.
29.
COMSOL AB.
,
2010
, “
COMSOL Multiphysics User's Guide
,” COMSOL AB., Stockholm, Sweden.
You do not currently have access to this content.