Heat transfer and pressure drop characteristics of R-134a boiling in a chevron-patterned brazed plate heat exchanger (BPHE) are studied experimentally. With corrugated BPHE channels having hydraulic diameter of 3.4 mm and low refrigerant mass flux, boiling near the micro-macroscale transition is speculated. Heat exchanger performance is characterized with varying mass flux (30–50 kgm−2s−1), saturation pressure (675 kPa and 833 kPa), heat flux (0.8 and 2.5 kWm−2), and vapor quality (0.1–0.9). The two-phase refrigerant heat transfer coefficient increases with heat flux as often observed during nucleate boiling. It also weakly increases with saturation pressure and the associated lower latent heat during convective boiling; heat transfer is improved by the decreased liquid film thickness surrounding confined bubbles inside the narrow BPHE channels, which is the main characteristic of microscale boiling. As often observed in macroscale boiling, the inertial forces of the liquid and vapor phases cause an unsteady annular film, leading to premature partial dryout. The onset of dryout is accelerated at the lower saturation pressure, due to increased surface tension, another microscale-like characteristic. Higher surface tension retains liquid in sharp corners of the corrugated channel, leaving lateral surface areas of the wall dry. Two-phase pressure drop increases with mass flux and vapor quality, but with decreasing saturation pressure. Dryout decreases the friction factor due to the much lower viscosity of the gas phase in contact with the wall. Several semi-empirical transition criteria and correlations buttress the current analyses that the thermal-fluidic characteristics peculiar to BPHEs might be due to macro-microscale transition in boiling.

References

1.
García-Cascales
,
J. R.
,
Vera-García
,
F.
,
Corberán-Salvador
,
J. M.
, and
Gonzálvez-Maciá
,
J.
,
2007
, “
Assessment of Boiling and Condensation Heat Transfer Correlations in the Modelling of Plate Heat Exchangers
,”
Int. J. Refrig.
,
30
(
6
), pp.
1029
1041
.
2.
Yan
,
Y.-Y.
, and
Lin
,
T.-F.
,
1999
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
118
127
.
3.
Thonon
,
B.
,
Feldman
,
A.
,
Margat
,
L.
, and
Marvillet
,
C.
,
1997
, “
Transition From Nucleate Boiling to Convective Boiling in Compact Heat Exchangers
,”
Int. J. Refrig.
,
20
(
8
), pp.
592
597
.
4.
Kandlikar
,
S. G.
,
1991
, “
A Model for Correlating Flow Boiling Heat Transfer in Augmented Tubes and Compact Evaporators
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
966
972
.
5.
Huang
,
J.
,
Sheer
,
T. J.
, and
Bailey-McEwan
,
M.
,
2012
, “
Heat Transfer and Pressure Drop in Plate Heat Exchanger Refrigerant Evaporators
,”
Int. J. Refrig.
,
35
(
2
), pp.
325
335
.
6.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2007
, “
Heat Transfer and Pressure Drop During HFC Refrigerant Vaporisation Inside a Brazed Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5194
5203
.
7.
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2002
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop of Refrigerant R-410A in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1033
1044
.
8.
Khan
,
T. S.
,
Khan
,
M. S.
,
Chyu
,
M. C.
, and
Ayub
,
Z. H.
,
2012
, “
Experimental Investigation of Evaporation Heat Transfer and Pressure Drop of Ammonia in a 60 °Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
6
), pp.
336
348
.
9.
Khan
,
M. S.
,
Khan
,
T. S.
,
Chyu
,
M. C.
, and
Ayub
,
Z. H.
,
2012
, “
Experimental Investigation of Evaporation Heat Transfer and Pressure Drop of Ammonia in a 30 °Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
6
), pp.
1757
1765
.
10.
Ayub
,
Z. H.
,
2003
, “
Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transfer Eng.
,
24
(
5
), pp.
3
16
.
11.
Eldeeb
,
R.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2016
, “
A Survey of Correlations for Heat Transfer and Pressure Drop for Evaporation and Condensation in Plate Heat Exchangers
,”
Int. J. Refrig.
,
65
, pp.
12
26
.
12.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2015
, “
A New Model for Refrigerant Boiling Inside Brazed Plate Heat Exchangers (BPHEs)
,”
Int. J. Heat Mass Transfer
,
91
, pp.
144
149
.
13.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers—Part 1: Review and Experimental Database
,”
Int. J. Refrig.
,
61
, pp.
166
184
.
14.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers—Part 2: Comparison of Literature Methods to Database and New Prediction Methods
,”
Int. J. Refrig.
,
61
, pp.
185
203
.
15.
Longo
,
G. A.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2015
, “
A New Computational Procedure for Refrigerant Condensation Inside Herringbone-Type Brazed Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
82
, pp.
530
536
.
16.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
,
88
(Pt. 1), pp.
185
196
.
17.
Gorenflo, D., and Kenning, D., 2010, “
Pool Boiling
,”
VDI Heat Atlas
, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (VDI-GVC), Springer, Berlin, pp. 757–792.
18.
Cheng
,
L.
, and
Xia
,
G.
,
2017
, “
Fundamental Issues, Mechanisms and Models of Flow Boiling Heat Transfer in Microscale Channels
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. A
), pp.
97
127
.
19.
Lee
,
E.
,
Kang
,
H.
, and
Kim
,
Y.
,
2014
, “
Flow Boiling Heat Transfer and Pressure Drop of Water in a Plate Heat Exchanger With Corrugated Channels at Low Mass Flux Conditions
,”
Int. J. Heat Mass Transfer
,
77
, pp.
37
45
.
20.
Vakili-Farahani
,
F.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2014
, “
Two-Phase Flow and Boiling of R-245fa in a 1 mm Pressing Depth Plate Heat Exchanger—Part I: Adiabatic Pressure Drop
,”
Interfacial Phenom. Heat Transfer
,
2
(
4
), pp.
325
342
.
21.
Vakili-Farahani
,
F.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2014
, “
Two-Phase Flow and Boiling of R-245fa in a 1 mm Pressing Depth Plate Heat Exchanger—Part II: Flow Boiling, Heat Transfer
,”
Interfacial Phenom. Heat Transfer
,
2
(
4
), pp.
343
361
.
22.
Jacobi
,
A. M.
, and
Thome
,
J. R.
,
2002
, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1131
1136
.
23.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow—Part 1: Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
37
47
.
24.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow—Part 2: Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.
25.
Lee
,
H.
,
Li
,
S.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Chun
,
H. H.
,
2013
, “
Experimental Investigations on Flow Boiling Heat Transfer in Plate Heat Exchanger at Low Mass Flux Condition
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
408
415
.
26.
Kim
,
H. J.
,
Liebenberg
,
L.
, and
Jacobi
,
A. M.
,
2017
, “Thermal-Hydraulic Performance of R-134a Boiling at Low Mass Fluxes in a Small Vertical Brazed Plate Heat Exchanger,”
ASME
Paper No. HT2017-5083.
27.
Fernández-Seara
,
J.
,
Uhía
,
F. J.
,
Sieres
,
J.
, and
Campo
,
A.
,
2007
, “
A General Review of the Wilson Plot Method and Its Modifications to Determine Convection Coefficients in Heat Exchange Devices
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2745
2757
.
28.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas–Liquid Two-Phase Flow in Microchannels—Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
377
394
.
29.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
,
LeMouel
,
A.
, and
McCord
,
B. N.
,
1999
, “
Gas–Liquid Two-Phase Flow in Microchannels—Part II: Void Fraction and Pressure Drop
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
395
410
.
30.
Khan
,
M. S.
,
Khan
,
T. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2014
, “
Evaporation Heat Transfer and Pressure Drop of Ammonia in a Mixed Configuration Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
41
, pp.
92
102
.
31.
Awad
,
M. M.
, and
Muzychka
,
Y. S.
,
2008
, “
Effective Property Models for Homogeneous Two-Phase Flows
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
106
113
.
32.
Shah
,
R. K.
, and
Focke
,
W. W.
,
1988
,
Plate Heat Exchangers and Their Design Theory
,
Hemisphere Publishing Corporation
,
Washington, DC
.
33.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
,
1959
, “
Condensation Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Process Symp. Ser.
,
55
(29), pp.
171
176
.https://scholarship.rice.edu/handle/1911/18229
34.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
35.
Yang
,
J.
,
Jacobi
,
A.
, and
Liu
,
W.
,
2017
, “
Heat Transfer Correlations for Single-Phase Flow in Plate Heat Exchangers Based on Experimental Data
,”
Appl. Therm. Eng.
,
113
, pp.
1547
1557
.
36.
Hong
,
S.
,
Tang
,
Y.
,
Wang
,
S.
, and
Kai
,
C.
,
2017
, “
Heat Transfer Characteristics of Flow Boiling in Horizontal Ultra-Shallow Microchannels
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. A
), pp.
501
511
.
37.
Zhang
,
J.
,
Desideri
,
A.
,
Kærn
,
M. R.
, Ommen, T. S., Wronski, J., and
Haglind
,
F.
,
2017
, “
Flow Boiling Heat Transfer and Pressure Drop Characteristics of R134a, R1234yf and R1234ze in a Plate Heat Exchanger With Conditions Prevailing in the Evaporator of Organic Rankine Cycle Units
,” Int. J. Heat Mass Transfer,
108
(Pt. B), pp.
1787
1801
.
38.
Carey
,
V. P.
,
1992
,
Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
, Hemisphere Publication, Washington, DC.
39.
Mehendale
,
S. S.
, and
Jacobi
,
A. M.
,
2000
, “
Evaporative Heat Transfer in Mesoscale Heat Exchangers
,”
ASHRAE Trans.
,
106
(Pt. 1), pp.
143
151
.https://www.techstreet.com/standards/da-00-02-2-evaporative-heat-transfer-in-mesoscale-heat-exchangers?product_id=1719377
40.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small Diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
705
715
.
41.
Donowski
,
V.
, and
Kandlikar
,
S.
,
2000
, “
Correlating Evaporation Heat Transfer Coefficient of Refrigerant R-134a in a Plate Heat Exchanger
,”
Engineering Foundation Conference on Pool and Flow Boiling
, Anchorage, AK, Apr. 30–May 5, pp.
1
18
.https://pdfs.semanticscholar.org/b099/3075f5ffd2fdc94f28f6e92f693dde54e983.pdf
42.
Han
,
D.-H.
,
Lee
,
K.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Experiments on the Characteristics of Evaporation of R410A in Brazed Plate Heat Exchangers With Different Geometric Configurations
,”
Appl. Therm. Eng.
,
23
(10), pp. 1209–1225.
43.
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2003
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
852
857
.
You do not currently have access to this content.