Abstract

A direct numerical simulation (DNS) of bare rod bundles with a low pitch-to-diameter ratio is performed with heat transfer at different Prandtl numbers. Turbulence statistics for temperature and velocity as well as the turbulent budgets have been collected. High-fidelity simulations are performed with the spectral element method (SEM) using Nek5000, a highly scalable code. To pertain to industrial-related flows, a rod bundle model is based on Hooper and Wood's (Hooper, J. D., and Wood, D., 1984, “Fully Developed Rod Bundle Flow Over a Large Range of Reynolds Number,” Nucl. Eng. Des., 83(1), pp. 31–46) experimental setup. Both wall normalized velocity profile and turbulent kinetic energy are validated with a Reynolds number of 22,600. Kolmogorov length scales and time scales are calculated to be within the simulation's spatial–temporal resolution. Moreover, gap vortices and coherent structures are quantified by using Lambda2 vortex criterion, frequency analysis, and two-point correlation. Heat transfer statistics are discussed with a constant heat flux for six different Prandtl numbers ranging from 2 to 0.002. This range shows significantly different characteristics in temperature for both mean and variance. Mean temperature profiles in the subchannel center are very sensitive to the Prandtl number when it becomes small. It is also found that the location of the local maxima for the variance of temperature fluctuations becomes very sensitive at larger Prandtl numbers. The temperature frequency analysis reveals a shift to lower frequencies for low Prandtl numbers. The DNS results provided in this work will contribute as benchmark for the improvement and development of existing and new turbulent heat transfer models at different Prandtl number regimes.

References

1.
Reynolds
,
A. J.
,
1975
, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1055
1069
.10.1016/0017-9310(75)90223-9
2.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
3.
Lefhalm
,
C. H.
,
Tak
,
N. I.
,
Piecha
,
H.
, and
Stieglitz
,
R.
,
2004
, “
Turbulent Heavy Liquid Metal Heat Transfer Along a Heated Rod in an Annular Cavity
,”
J. Nucl. Mater.
,
335
(
2
), pp.
280
285
.10.1016/j.jnucmat.2004.07.028
4.
Maciocco
,
L.
,
2002
, “
Assessment of Turbulence Models for Heavy Liquid Metals in Computational Fluid Dynamics
,” CRS4 Technical Report.
5.
Chandra
,
L.
,
Roelofs
,
F.
,
Houkema
,
M.
, and
Jonker
,
B.
,
2009
, “
A Stepwise Development and Validation of a RANS Based CFD Modelling Approach for the Hydraulic and Thermal-Hydraulic Analyses of Liquid Metal Flow in a Fuel Assembly
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1988
2003
.10.1016/j.nucengdes.2009.05.022
6.
Cheng
,
X.
, and
Tak
,
N. I.
,
2006
, “
CFD Analysis of Thermal–Hydraulic Behavior of Heavy Liquid Metals in Sub-Channels
,”
Nucl. Eng. Des.
,
236
(
18
), pp.
1874
1885
.10.1016/j.nucengdes.2006.02.001
7.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
,
New York
.
8.
Shams
,
A.
,
Roelofs
,
F.
,
Baglietto
,
E.
,
Lardeau
,
S.
, and
Kenjeres
,
S.
,
2014
, “
Assessment and Calibration of an Algebraic Turbulent Heat Flux Model for Low-Prandtl Fluids
,”
Int. J. Heat Mass Transfer
,
79
, pp.
589
601
.10.1016/j.ijheatmasstransfer.2014.08.018
9.
Maresca
,
M. W.
, and
Dwyer
,
O. E.
,
1964
, “
Heat Transfer to Mercury Flowing In-Line Through a Bundle of Circular Rods
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
180
186
.10.1115/1.3687091
10.
Kalish
,
S.
, and
Dwyer
,
O. E.
,
1967
, “
Heat Transfer to NaK Flowing Through Unbaffled Rod Bundles
,”
Int. J. Heat Mass Transfer
,
10
(
11
), pp.
1533
1558
.10.1016/0017-9310(67)90006-3
11.
Dwyer
,
O. E.
, and
Berry
,
H. C.
,
1972
, “
Heat Transfer to Liquid Metals Flowing Turbulently and Longitudinally Through Closely Spaced Rod Bundles—Part I
,”
Nucl. Eng. Des.
,
23
(
3
), pp.
273
294
.10.1016/0029-5493(72)90150-1
12.
Hlavac
,
P. J.
,
Nimmo
,
B. G.
, and
Dwyer
,
O. E.
,
1972
, “
Experimental Study of Effect of Wetting on Turbulent Flow of Mercury in Annuli
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2611
2631
.10.1016/0017-9310(72)90150-0
13.
Borishanskii
,
V. M.
,
Gotovskii
,
M. A.
, and
Firsova
,
E. V.
,
1969
, “
Heat Transfer to Liquid Metals in Longitudinally Wetted Bundles of Rods
,”
At. Energy
,
27
(
6
), pp.
1347
1350
.10.1007/BF01118660
14.
Mikityuk
,
K.
,
2009
, “
Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
680
687
.10.1016/j.nucengdes.2008.12.014
15.
Pacio
,
J.
,
Daubner
,
M.
,
Fellmoser
,
F.
,
Litfin
,
K.
,
Marocco
,
L.
,
Stieglitz
,
R.
,
Taufall
,
S.
, and
Wetzel
,
T.
,
2014
, “
Heavy-Liquid Metal Heat Transfer Experiment in a 19-Rod Bundle With Grid Spacers
,”
Nucl. Eng. Des.
,
273
, pp.
33
46
.10.1016/j.nucengdes.2014.02.020
16.
Kasagi
,
N.
, and
Ohtsubo
,
Y.
,
1993
, “
Direct Numerical Simulation of Low Prandtl Number Thermal Field in a Turbulent Channel Flow
,”
Turbulent Shear Flows
, Vol.
8
,
Springer
,
Berlin
, pp.
97
119
.
17.
Niemann
,
M.
, and
Fröhlich
,
J.
,
2016
, “
Buoyancy-Affected Backward-Facing Step Flow With Heat Transfer at Low Prandtl Number
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1237
1250
.10.1016/j.ijheatmasstransfer.2016.05.137
18.
Rowe
,
D. S.
,
Johnson
,
B. M.
, and
Knudsen
,
J. G.
,
1974
, “
Implications Concerning Rod Bundle Crossflow Mixing Based on Measurements of Turbulent Flow Structure
,”
Int. J. Heat Mass Transfer
,
17
(
3
), pp.
407
419
.10.1016/0017-9310(74)90012-X
19.
Seale
,
W. J.
,
1979
, “
Turbulent Diffusion of Heat Between Connected Flow Passages Part 1: Outline of Problem and Experimental Investigation
,”
Nucl. Eng. Des.
,
54
(
2
), pp.
183
195
.10.1016/0029-5493(79)90166-3
20.
Rock
,
R. C. K.
, and
Lightstone
,
M. F.
,
2001
, “
A Numerical Investigation of Turbulent Interchange Mixing of Axial Coolant Flow in Rod Bundle Geometries
,”
Numer. Heat Transfer, Part A
,
40
(
3
), pp.
221
237
.10.1080/10407782.2001.10120634
21.
Meyer
,
L.
,
2010
, “
From Discovery to Recognition of Periodic Large Scale Vortices in Rod Bundles as Source of Natural Mixing Between Subchannels—A Review
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1575
1588
.10.1016/j.nucengdes.2010.03.014
22.
Tavoularis
,
S.
,
2011
, “
Rod Bundle Vortex Networks, Gap Vortex Streets, and Gap Instability: A Nomenclature and Some Comments on Available Methodologies
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2624
2626
.10.1016/j.nucengdes.2011.03.052
23.
Chang
,
D.
, and
Tavoularis
,
S.
,
2007
, “
Numerical Simulation of Turbulent Flow in a 37-Rod Bundle
,”
Nucl. Eng. Des.
,
237
(
6
), pp.
575
590
.10.1016/j.nucengdes.2006.08.001
24.
Merzari
,
E.
, and
Ninokata
,
H.
,
2011
, “
Proper Orthogonal Decomposition of the Flow in a Tight Lattice Rod-Bundle
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4621
4632
.10.1016/j.nucengdes.2010.12.005
25.
Merzari
,
E.
,
Obabko
,
A.
,
Fischer
,
P.
,
Halford
,
N.
,
Walker
,
J.
,
Siegel
,
A.
, and
Yu
,
Y.
,
2017
, “
Large-Scale Large Eddy Simulation of Nuclear Reactor Flows: Issues and Perspectives
,”
Nucl. Eng. Des.
,
312
, pp.
86
98
.10.1016/j.nucengdes.2016.09.028
26.
Baglietto
,
E.
,
Ninokata
,
H.
, and
Misawa
,
T.
,
2006
, “
CFD and DNS Methodologies Development for Fuel Bundle Simulations
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1503
1510
.10.1016/j.nucengdes.2006.03.045
27.
Shams
,
A.
, and
Kwiatkowski
,
T.
,
2018
, “
Towards the Direct Numerical Simulation of a Closely-Spaced Bare Rod Bundle
,”
Ann. Nucl. Energy
,
121
, pp.
146
161
.10.1016/j.anucene.2018.07.022
28.
Hooper
,
J. D.
, and
Wood
,
D.
,
1984
, “
Fully Developed Rod Bundle Flow Over a Large Range of Reynolds Number
,”
Nucl. Eng. Des.
,
83
(
1
), pp.
31
46
.10.1016/0029-5493(84)90027-X
29.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
30.
Tomboulides
,
A. G.
,
Lee
,
J. C. Y.
, and
Orszag
,
S. A.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
31.
Hooper
,
J. D.
,
Wood
,
D. H.
, and
Crawford
,
W. J.
,
1983
, “
Data Bank of Developed Single-Phase Flow Through a Square-Pitch Rod Cluster for Four Reynolds Numbers
,” Australian Nuclear Science and Technology Organisation,
epub
.http://apo.ansto.gov.au/dspace/handle/10238/59
32.
Kolmogorov
,
A. N.
,
1991
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. R. Soc. London., Ser. A
,
434
(
1890
), pp.
9
13
.10.1098/rspa.1991.0075
33.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
34.
Walker
,
J.
,
Merzari
,
E.
,
Obabko
,
A.
,
Fischer
,
P.
, and
Siegel
,
A.
,
2014
, “
Accurate Prediction of the Wall Shear Stress in Rod Bundles With the Spectral Element Method at High Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
50
, pp.
287
299
.10.1016/j.ijheatfluidflow.2014.08.012
35.
Pierce
,
B.
,
Moin
,
P.
, and
Sayadi
,
T.
,
2013
, “
Application of Vortex Identification Schemes to Direct Numerical Simulation Data of a Transitional Boundary Layer
,”
Phys. Fluids
,
25
(
1
), p.
015102
.10.1063/1.4774340
36.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
37.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
38.
Hooper
,
J. D.
, and
Rehme
,
K.
,
1984
, “
Large-Scale Structural Effects in Developed Turbulent Flow Through Closely-Spaced Rod Arrays
,”
J. Fluid Mech.
,
145
(
1
), pp.
305
337
.10.1017/S0022112084002949
39.
Möller
,
S. V.
,
1991
, “
On Phenomena of Turbulent Flow Through Rod Bundles
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
25
35
.10.1016/0894-1777(91)90018-M
40.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
,
2000
, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical Rod—Part 1: Reynolds-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
,
23
(
1–2
), pp.
59
73
.10.1016/S0894-1777(00)00038-8
41.
Baratto
,
F.
,
Bailey
,
S. C. C.
, and
Tavoularis
,
S.
,
2006
, “
Measurements of Frequencies and Spatial Correlations of Coherent Structures in Rod Bundle Flows
,”
Nucl. Eng. Des.
,
236
(
17
), pp.
1830
1837
.10.1016/j.nucengdes.2005.12.009
42.
Wu
,
X.
, and
Trupp
,
A. C.
,
1994
, “
Spectral Measurements and Mixing Correlation in Simulated Rod Bundle Subchannels
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1277
1281
.10.1016/0017-9310(94)90212-7
You do not currently have access to this content.