Abstract

Stanton number, St, calculations as a function of position, x, are made for turbulent, external boundary layer flow over aerodynamically rough surfaces and also for a fully developed duct flow with rough top and bottom surfaces. This is accomplished with three different forms of generalized Reynolds analogies from the literature and also with a new data correlation developed with the aid of the thermal inner and outer layers. Comparison of these predicted values of St with experimental data, from the literature, is made for several favorable equilibrium, one nonequilibrium, and a zero pressure gradient as well as a duct flow over “real” roughness patterns. Predictions compare reasonably well with the data for some of the generalized Reynolds analogies.

References

1.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
2.
Oosthuizon
,
P. H.
, and
Naylor
,
D.
,
1999
,
Introduction to Convective Heat Transfer Analysis
,
WCB/McGraw-Hill
,
New York
.
3.
Dipprey
,
D. F.
, and
Sabersky
,
R. H.
,
1963
, “
Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
6
(
5
), pp.
329
353
.10.1016/0017-9310(63)90097-8
4.
Belnap
,
B. J.
,
van Rij
,
J. A.
, and
Ligrani
,
P. M.
,
2002
, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3089
3099
.10.1016/S0017-9310(02)00042-X
5.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
472
485
.10.1115/1.1861919
6.
Bons
,
J. P.
,
2002
, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Free Stream Turbulence
,”
ASME J Turbomach.
,
124
(
4
), pp.
632
644
.10.1115/1.1505851
7.
Sucec
,
J.
,
2014
, “
An Integral Solution for Skin Friction in Turbulent Flow Over Aerodynamically Rough Surfaces With an Arbitrary Pressure Gradient
,”
ASME J. Fluid Eng.
,
136
(
8
), p.
081103
.10.1115/1.4027140
8.
Grabow
,
R. M.
, and
White
,
C. O.
,
1975
, “
Surface Roughness Effects on Nosetip Ablation Characteristics
,”
AIAA J.
,
13
(
5
), pp.
605
609
.10.2514/3.49772
9.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
New York
.
10.
Sucec
,
J.
,
2009
, “
An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011702
.10.1115/1.2977610
11.
Sucec
,
J.
,
2017
, “
A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces
,”
ASME J. Fluid Eng.
,
139
(
2
), p.
121204
.10.1115/1.4037523
12.
Coleman
,
H. W.
,
1976
, “
Momentum and Energy Transport in the Accelerated Fully Rough Turbulent Boundary Layer
,” Ph.D. thesis,
Department of Mechanical Engineering, Stanford University
, Stanford, CA.
13.
Moffat
,
R. J.
,
Healzer
,
J. M.
, and
Kays
,
W. M.
,
1978
, “
Experimental Heat Transfer Behavior of a Turbulent Boundary Layer on a Rough Surface With Blowing
,”
ASME J. Heat Transfer
,
100
(
1
), pp.
134
142
.10.1115/1.3450487
14.
Colernan
,
H. W.
,
Pimenta
,
M. M.
, and
Moffat
,
R. J.
,
1978
, “
Rough Wall Turbulent Heat Transfer With Variable Velocity, Wall Temperature and Blowing
,”
AIAA J.
,
16
(
1
), pp.
78
82
.10.2514/3.60860
15.
Ambrok
,
G. S.
,
1957
, “
Approximate Solutions of the Equations for the Thermal Boundary Layer With Variations in Boundary Layer Structure
,”
Sov. Phys. Tech. Phys.
,
2
(
9
), pp.
1979
1986
.
You do not currently have access to this content.