Abstract

Experimental analysis of the onset of buoyancy-driven convection in a top facing high aspect ratio cavity is reported. Bottom surface of the cavity is heated, with its two vertical side walls being insulated. Thermal field in the cavity has been non-intrusively mapped using a Mach–Zehnder interferometer. The cavity has been subjected to two different temperature differences, ΔT = 3 °C (Ra 300) and ΔT = 15 °C (Ra 1400). Sudden change in the heat transfer coefficient as well as the formation of thermally stratified layers at the bottom part of the cavity was not observed for the applied cavity temperature differences, which in turn, indicates that there is no such phenomenon of onset of buoyancy-driven convection in high aspect ratio cavities. Corner flow, induced due to the temperature difference between the atmosphere and the cavity, is the dominant flow inside the cavity. Almost identical profiles of flow in both the cases of the applied temperature potentially signify that the flow profile is independent of the Rayleigh number or the temperature differences. These observations have been supported by whole field temperature distribution profiles, spatial distributions of local Nusselt number, and nondimensional temperature at different position of the cavity.

References

1.
Bilgen
,
E.
, and
Oztop
,
H.
,
2005
, “
Natural Convection Heat Transfer in Partially Open Inclined Square Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1470
1479
.10.1016/j.ijheatmasstransfer.2004.10.020
2.
Le Quere
,
P.
,
Humphrey
,
J. A. C.
, and
Sherman
,
F. S.
,
1981
, “
Numerical Calculation of Thermally Driven Two-Dimensional Unsteady Laminar Flow in Cavities of Rectangular Cross Section
,”
Numer. Heat Transfer
,
4
(
3
), pp.
249
283
.10.1080/01495728108961792
3.
Showole
,
R. A.
, and
Tarasuk
,
J. D.
,
1993
, “
Experimental and Numerical Studies of Natural Convection With Flow Separation in Upward-Facing Inclined Open Cavities
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
592
605
.10.1115/1.2910729
4.
Chan
,
Y. L.
, and
Tien
,
C. L.
,
1985
, “
A Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities
,”
Numer. Heat Transfer
,
8
(
1
), pp.
65
79
.10.1080/01495728508961842
5.
Chan
,
Y. L.
, and
Tien
,
C. L.
,
1985
, “
A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
603
612
.10.1016/0017-9310(85)90182-6
6.
Polat
,
O.
, and
Bilgen
,
E.
,
2002
, “
Laminar Natural Convection in Inclined Open Shallow Cavities
,”
Int. J. Therm. Sci.
,
41
(
4
), pp.
360
368
.10.1016/S1290-0729(02)01326-1
7.
Polat
,
O.
, and
Bilgen
,
E.
,
2003
, “
Conjugate Heat Transfer in Inclined Open Shallow Cavities
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1563
1573
.10.1016/S0017-9310(02)00427-1
8.
Bilgen
,
E.
, and
Muftuoglu
,
A.
,
2008
, “
Natural Convection in an Open Square Cavity With Slots
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
896
900
.10.1016/j.icheatmasstransfer.2008.05.001
9.
Mohamad
,
A. A.
,
1995
, “
Natural Convection in Open Cavities and Slots
,”
Numer. Heat Transfer, Part A
,
27
(
6
), pp.
705
716
.10.1080/10407789508913727
10.
Srivastava
,
A.
,
Phukan
,
A.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2004
, “
Imaging of a Convective Field in a Rectangular Cavity Using Interferometry, Schlieren, and Shadowgraph
,”
Opt. Lasers Eng.
,
42
(
4
), pp.
469
485
.10.1016/j.optlaseng.2004.03.003
11.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
12.
Saxena
,
A.
,
Kishor
,
V.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2020
, “
Whole Field Measurements to Identify the Critical Rayleigh Number for the Onset of Natural Convection in Top Open Cavity
,”
Exp. Heat Transfer
,
33
(
2
), pp.
123
140
.10.1080/08916152.2019.1586800
13.
Perekattu
,
G. K.
, and
Balaji
,
C.
,
2009
, “
On the Onset of Natural Convection in Differentially Heated Shallow Fluid Layers With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4254
4263
.10.1016/j.ijheatmasstransfer.2009.04.006
14.
Xiaowen
,
S.
,
1997
, “
Simulation of Rayleigh-Benard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev.
,
55
, pp.
2780
2788
.10.1103/PhysRevE.55.2780
15.
Xia
,
C.
, and
Murthy
,
Y. J.
,
2002
, “
Buoyancy-Driven Flow Transitions in Deep Cavities Heated From Below
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
650
659
.10.1115/1.1481356
16.
Chandra
,
K.
,
1938
, “
Instability of Fluids Heated Flow Below
,”
Proc. R. Soc., A
,
164
(
917
), pp.
231
242
.10.1098/rspa.1938.0015
17.
Gelfgat
,
Y.
,
1999
, “
Different Modes of Rayleigh–Benard Instability in Two and Three-Dimensional Rectangular Enclosures
,”
J. Comput. Phys.
,
156
(
2
), pp.
300
324
.10.1006/jcph.1999.6363
18.
Crunkleton
,
D. W.
, and
Anderson
,
T. J.
,
2006
, “
A Numerical Study of Flow and Thermal Fields in the Tilted Rayleigh-Benard Convection
,”
Int. Commun. Heat Mass Transfer
,
33
(
1
), pp.
24
29
.10.1016/j.icheatmasstransfer.2005.09.004
19.
Mohamad
,
A.
, and
Viskanta
,
R.
,
1992
, “
Laminar Flow and Heat Transfer in Rayleigh–Bénard Convection With Shear
,”
Phys. Fluids
,
4
(
10
), pp.
2131
2140
.10.1063/1.858509
20.
Mohanan
,
S.
, and
Srivastava
,
A.
,
2014
, “
Application of the Windowed-Fourier-Transform-Based Fringe Analysis Technique for Investigating Temperature and Concentration Fields in Fluids
,”
Appl. Opt.
,
53
(
11
), pp.
2331
2344
.10.1364/AO.53.002331
21.
Narayan
,
S.
,
Singh
,
A. K.
, and
Srivastava
,
A.
,
2017
, “
Interferometric Study of Natural Convection Heat Transfer Phenomena Around Array of Heated Cylinders
,”
Int. J. Heat Mass Transfer
,
109
, pp.
278
292
.10.1016/j.ijheatmasstransfer.2017.01.106
22.
Choudhury
,
K.
,
Singh
,
R. K.
,
Narayan
,
S.
,
Srivastava
,
A.
, and
Kumar
,
A.
,
2016
, “
Time Resolved Interferometric Study of the Plasma Plume Induced Shock Wave in Confined Geometry: Two Dimensional Mapping of the Ambient and Plasma Density
,”
Phys. Plasmas
,
23
(
4
), p.
042108
.10.1063/1.4947032
23.
Kemao
,
Q.
,
2004
, “
Windowed Fourier Transform for Fringe Pattern Analysis
,”
Appl. Opt.
,
43
(
13
), pp.
2695
2702
.10.1364/AO.43.002695
24.
Kemao
,
Q.
,
2007
, “
Two-Dimensional Windowed Fourier Transform for Fringe Pattern Analysis: Principles, Applications and Implementations
,”
Opt. Lasers Eng.
,
45
(
2
), pp.
304
317
.10.1016/j.optlaseng.2005.10.012
25.
Kemao
,
Q.
,
Wang
,
H.
, and
Gao
,
W.
,
2008
, “
Windowed Fourier Transform for Fringe Pattern Analysis: Theoretical Analyses
,”
Appl. Opt.
,
47
(
29
), pp.
5408
5419
.10.1364/AO.47.005408
You do not currently have access to this content.