Abstract

In this paper, the local and average heat transfer coefficient enhancement or deterioration, and rise in pumping power in steady, laminar alumina–water, titania–water, and carbon nanotube (CNT)–water nanofluids flow in a horizontal circular tube subjected to constant heat flux at the outer wall have been investigated numerically based on a new variable property nonhomogeneous flow model which takes into account agglomeration of nanoparticles. The results have been compared with the published experimental results of Utomo et al. (Utomo, A. T. et al., 2014, “The Effect of Nanoparticles on Laminar Heat Transfer in a Horizontal Tube,” Int. J. Heat Mass Transfer, 69, pp. 77–91.) using various property models of thermal conductivity and viscosity, and for equal Reynolds number, equal inlet velocity, equal mass flowrate, and equal pumping power of nanofluid and base fluid. Stream function–vorticity–temperature formulation and finite difference method have been used. Using the same Reynolds number of nanofluid and base fluid gives much higher enhancement in average heat transfer coefficient as compared to other modes of comparison. Interestingly, the criterion of equal pumping power gives negative percent enhancement in the case of CNT–water nanofluid. The pumping power is found to rise for all three nanofluids. It is found that consideration of agglomeration of nanoparticles has produced improved accuracy in the numerical solution.

References

1.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
2.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
,
1996
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
MRS Online Proc.
, 457, epub.10.1557/PROC-457-3
3.
Lee
,
S.
,
Choi
,
S.-S.
,
Li
,
S.
, and
Eastman
,
J.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
4.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
5.
Bruggeman
,
V. D.
,
1935
, “
Berechnung Perschiedener Physikalischer Konstanten von Heterogenen Substanzen—I: Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper Aus Isotropen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.10.1002/andp.19354160705
6.
Hamilton
,
R. L.
, and
Crosser
,
O.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
7.
Wasp
,
E. J.
,
Kenny
,
J. P.
, and
Gandhi
,
R. L.
,
1977
, “
Solid–Liquid Flow: Slurry Pipeline Transportation. [Pumps, Valves, Mechanical Equipment, Economics]
,”
Ser. Bulk Mater. Handl.
, 1(4).
8.
Yu
,
W.
, and
Choi
,
S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
.10.1023/A:1024438603801
9.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.10.1007/s11051-004-3170-5
10.
Xue
,
Q.
, and
Xu
,
W.-M.
,
2005
, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
,
90
(
2–3
), pp.
298
301
.10.1016/j.matchemphys.2004.05.029
11.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.10.1115/1.2188509
12.
Jang
,
S. P.
, and
Choi
,
S. U.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
617
623
.10.1115/1.2712475
13.
Murshed
,
S.
,
Leong
,
K.
, and
Yang
,
C.
,
2009
, “
A Combined Model for the Effective Thermal Conductivity of Nanofluids
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2477
2483
.10.1016/j.applthermaleng.2008.12.018
14.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
15.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
16.
Eastman
,
J. A.
,
Choi
,
S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
17.
Choi
,
S.
,
Zhang
,
Z.
,
Yu
,
W.
,
Lockwood
,
F.
, and
Grulke
,
E.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
18.
Wang
,
B.-X.
,
Zhou
,
L.-P.
, and
Peng
,
X.-F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
19.
Murshed
,
S.
,
Leong
,
K.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
.10.1016/j.ijthermalsci.2004.12.005
20.
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Eastman
,
J.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.10.1016/S0017-9310(01)00175-2
21.
Sohn
,
C. W.
, and
Chen
,
M.
,
1981
, “
Microconvective Thermal Conductivity in Disperse Two-Phase Mixtures as Observed in a Low Velocity Couette Flow Experiment
,”
ASME J. Heat Transfer
,
103
(
1
), pp.
47
51
.10.1115/1.3244428
22.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
23.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
24.
Tseng
,
W. J.
, and
Lin
,
K.-C.
,
2003
, “
Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions
,”
Mater. Sci. Eng. A
,
355
(
1–2
), pp.
186
192
.10.1016/S0921-5093(03)00063-7
25.
Maı¨ga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.10.1016/j.spmi.2003.09.012
26.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
27.
Namburu
,
P.
,
Kulkarni
,
D.
,
Dandekar
,
A.
, and
Das
,
D.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.10.1049/mnl:20070037
28.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Misra
,
D.
, and
Das
,
D. K.
,
2007
, “
Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
397
402
.10.1016/j.expthermflusci.2007.05.001
29.
Nguyen
,
C.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.10.1016/j.ijheatfluidflow.2007.02.004
30.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
.10.1016/j.ijheatmasstransfer.2009.09.024
31.
Yu
,
W.
,
France
,
D. M.
,
Smith
,
D. S.
,
Singh
,
D.
,
Timofeeva
,
E. V.
, and
Routbort
,
J. L.
,
2009
, “
Heat Transfer to a Silicon Carbide/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3606
3612
.10.1016/j.ijheatmasstransfer.2009.02.036
32.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.10.1016/j.enconman.2010.06.072
33.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
34.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.10.1016/S0017-9310(02)00348-4
35.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.10.1007/s00231-002-0382-z
36.
Wolthers
,
W.
,
Duits
,
M. H.
,
Van Den Ende
,
D.
, and
Mellema
,
J.
,
1996
, “
Shear History Dependence of the Viscosity of Aggregated Colloidal Dispersions
,”
J. Rheol.
,
40
(
5
), pp.
799
811
.10.1122/1.550783
37.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.10.1002/aic.690490420
38.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
), pp.
1529
1534
.10.1021/nl060992s
39.
Mohraz
,
A.
,
Moler
,
D. B.
,
Ziff
,
R. M.
, and
Solomon
,
M. J.
,
2004
, “
Effect of Monomer Geometry on the Fractal Structure of Colloidal Rod Aggregates
,”
Phys. Rev. Lett.
,
92
(
15
), p.
155503
.10.1103/PhysRevLett.92.155503
40.
Chatterjee
,
T.
, and
Krishnamoorti
,
R.
,
2007
, “
Dynamic Consequences of the Fractal Network of Nanotube-Poly (Ethylene Oxide) Nanocomposites
,”
Phys. Rev. E
,
75
(
5
), p.
050403
.10.1103/PhysRevE.75.050403
41.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
42.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
43.
Garg
,
P.
,
Alvarado
,
J. L.
,
Marsh
,
C.
,
Carlson
,
T. A.
,
Kessler
,
D. A.
, and
Annamalai
,
K.
,
2009
, “
An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5090
5101
.10.1016/j.ijheatmasstransfer.2009.04.029
44.
Liu
,
D.
, and
Yu
,
L.
,
2010
, “
Experimental Investigation of Single-Phase Convective Heat Transfer of Nanofluids in a Minichannel
,”
ASME
Paper No. IHTC14-23018.10.1115/IHTC14-23018
45.
Ding
,
Y.
,
Chen
,
H.
,
Wang
,
L.
,
Yang
,
C.-Y.
,
He
,
Y.
,
Yang
,
W.
,
Lee
,
W. P.
,
Zhang
,
L.
, and
Huo
,
R.
,
2007
, “
Heat Transfer Intensification Using Nanofluids
,”
KONA Powder Particle J.
,
25
, pp.
23
38
.10.14356/kona.2007006
46.
Li
,
Q.
,
Xuan
,
Y.
, and
Wang
,
J.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.10.1115/1.1532008
47.
Sohn
,
C.-H.
, and
Kihm
,
K. D.
,
2009
, “
Nonhomogenous Modeling of Nanofluidic Energy Transport Accounting for the Thermophoretic Migration of Nanoparticles Inside Laminar Pipe Flows
,”
J. Korean Phys. Soc.
,
55
(
52
), pp.
2200
2208
.10.3938/jkps.55.2200
48.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
.10.1016/j.ijheatmasstransfer.2008.06.032
49.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L-W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
50.
Utomo
,
A. T.
,
Haghighi
,
E. B.
,
Zavareh
,
A. I.
,
Ghanbarpourgeravi
,
M.
,
Poth
,
H.
,
Khodabandeh
,
R.
,
Palm
,
B.
, and
Pacek
,
A. W.
,
2014
, “
The Effect of Nanoparticles on Laminar Heat Transfer in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
69
, pp.
77
91
.10.1016/j.ijheatmasstransfer.2013.10.003
51.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Advances in Heat Transfer
,”
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
, p.
128
.
52.
Yu
,
W.
,
France
,
D.
,
Timofeeva
,
E.
,
Singh
,
D.
, and
Routbort
,
J.
,
2010
, “
Thermophysical Property-Related Comparison Criteria for Nanofluid Heat Transfer Enhancement in Turbulent Flow
,”
Appl. Phys. Lett.
,
96
(
21
), p.
213109
.10.1063/1.3435487
53.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
54.
Zeinali Heris
,
S.
,
Kazemi-Beydokhti
,
A.
,
Noie
,
S.
, and
Rezvan
,
S.
,
2012
, “
Numerical Study on Convective Heat Transfer of Al2O3/Water, CuO/Water and Cu/Water Nanofluids Through Square Cross-Section Duct in Laminar Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
1
), pp.
1
14
.10.1080/19942060.2012.11015398
55.
Kuznetsov
,
A.
, and
Nield
,
D.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
56.
Heyhat
,
M.
, and
Kowsary
,
F.
,
2010
, “
Effect of Particle Migration on Flow and Convective Heat Transfer of Nanofluids Flowing Through a Circular Pipe
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062401
.10.1115/1.4000743
57.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of Nanofluids Over a Moving Surface in a Flowing Fluid
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1663
1668
.10.1016/j.ijthermalsci.2010.01.026
58.
di Schio
,
E. R.
,
Celli
,
M.
, and
Barletta
,
A.
,
2014
, “
Effects of Brownian Diffusion and Thermophoresis on the Laminar Forced Convection of a Nanofluid in a Channel
,”
ASME J. Heat Transfer
,
136
(
2
), p.
022401
.10.1115/1.4025376
59.
Alvariño
,
P. F.
,
Jabardo
,
J. S.
,
Arce
,
A.
, and
Galdo
,
M. L.
,
2013
, “
A Numerical Investigation of Laminar Flow of a Water/Alumina Nanofluid
,”
Int. J. Heat Mass Transfer
,
59
, pp.
423
432
.10.1016/j.ijheatmasstransfer.2012.12.033
60.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1995
,
Introduction to Fluid Mechanics
, 4th ed.,
Wiley
,
New York
.
61.
Batchelor
,
G.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.10.1017/S0022112077001062
62.
Maron
,
S. H.
, and
Pierce
,
P. E.
,
1956
, “
Application of Ree-Eyring Generalized Flow Theory to Suspensions of Spherical Particles
,”
J. Colloid Sci.
,
11
(
1
), pp.
80
95
.10.1016/0095-8522(56)90023-X
63.
Chen
,
H.
,
Ding
,
Y.
, and
Lapkin
,
A.
,
2009
, “
Rheological Behaviour of Nanofluids Containing Tube/Rod-Like Nanoparticles
,”
Powder Technol.
,
194
(
1–2
), pp.
132
141
.10.1016/j.powtec.2009.03.038
64.
Chen
,
H.
,
Ding
,
Y.
,
Lapkin
,
A.
, and
Fan
,
X.
,
2009
, “
Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids
,”
J. Nanopart. Res.
,
11
(
6
), pp.
1513
1520
.10.1007/s11051-009-9599-9
65.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
137
152
.10.1122/1.548848
66.
Zhou
,
L.-P.
,
Wang
,
B.-X.
,
Peng
,
X.-F.
,
Du
,
X.-Z.
, and
Yang
,
Y.-P.
,
2010
, “
On the Specific Heat Capacity of Cuo Nanofluid
,”
Adv. Mech. Eng.
,
2
, p.
172085
.
67.
Brenner
,
H.
, and
Condiff
,
D. W.
,
1974
, “
Transport Mechanics in Systems of Orientable Particles—IV: Convective Transport
,”
J. Colloid Interface Sci.
,
47
(
1
), pp.
199
264
.10.1016/0021-9797(74)90093-9
68.
Lemmon
,
E. W.
,
McLinden
,
M. O.
,
Friend
,
D. G.
,
Linstrom
,
P.
, and
Mallard
,
W.
,
2011
, NIST Chemistry Webbook, NIST Standard Reference Database No. 69, National Institute of Standards and Technology, Gaithersburg, MD.
69.
Einstein
,
A.
,
1956
,
Investigations on the Theory of the Brownian Movement
,
Dover Publications
,
Mineola, NY
.
70.
Halelfadl
,
S.
,
Estellé
,
P.
,
Aladag
,
B.
,
Doner
,
N.
, and
Maré
,
T.
,
2013
, “
Viscosity of Carbon Nanotubes Water-Based Nanofluids: Influence of Concentration and Temperature
,”
Int. J. Therm. Sci.
,
71
, pp.
111
117
.10.1016/j.ijthermalsci.2013.04.013
You do not currently have access to this content.