Abstract

In the present study, cylindrical portion of conventional (nonfinned) cyclone separator was reshaped by fixing triangular, semicircular, and rectangular cross section helical fins in order to make it as water wall having fin size 7 mm with fin pitch of 40 mm to improve its separation efficiency and to utilize the cyclone separator as heat exchanger. Fluid dynamic characteristics like axial velocity, tangential velocity, pressure drops were studied by varying the fin geometry (triangular/semicircular/rectangular). For the particles' size less than 3 μm, proposed cyclone separator with triangular helical fin was giving comparatively improved collection efficiency than other selected cyclone separators. Improvement in the collection efficiency of triangular fin-based cyclone separators was perceived from 5% to 10% over the conventional cyclone separator. Hence, helical fins with triangular in cross section were selected further for heat transfer and scale-up studies. It was observed that for the small barrel wall height (h = 400 mm) water temperature was enhanced by 4 °C, and with scale-up (making h = 800 mm) it was increased considerably around 15 °C. Thus based on improved separation efficiency to capture very-fine particulate matter (PM 2.5, which otherwise causes serious health issues) and considerable temperature gain of water noted at lab level scale-up study, triangular helical fins may be to fixed on the inner surface of barrel wall of conventional (nonfinned) cyclone separators in order to use them as heat exchanger for energy conservation in industrial applications.

References

1.
Nwokolo
,
N.
,
Mamphweli
,
S.
, and
Makaka
,
G.
,
2016
, “
An Investigation Into Heat Recovery From the Surface of a Cyclone Dust Collector Attached to a Downdraft Biomass Gasifier
,”
Appl. Therm. Eng.
,
98
, pp.
1158
1164
.10.1016/j.applthermaleng.2016.01.014
2.
Gupta
,
A. V. S. S. K. S.
, and
Nag
,
P. K.
,
2000
, “
Prediction of Heat Transfer Coefficient in the Cyclone Separator of a CFB
,”
Int. J. Energy Res.
,
24
(
12
), pp.
1065
1079
.10.1002/1099-114X(20001010)24:12<1065::AID-ER644>3.0.CO;2-#
3.
Nag
,
P. K.
, and
Singh
,
N. K.
,
1996
, “
Heat Transfer in the Cyclone Separator of a Circulating Fluidized Bed
,”
Preprints of CFB-5, 5th International Conference on Circulating Fluidized Beds
,
Beijing, China
, Paper No. HM 11.
4.
Azadi
,
M.
,
Azadi
,
M.
, and
Ali
,
M.
,
2010
, “
A CFD Study of the Effect of Cyclone Size on Its Performance Parameters
,”
J. Hazard. Mater.
,
182
(
1–3
), pp.
835
841
.10.1016/j.jhazmat.2010.06.115
5.
Hoekstra
,
A. J.
,
Derksen
,
J. J.
, and
Van Den Akker
,
H. E. A.
,
1999
, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2055
2065
.10.1016/S0009-2509(98)00373-X
6.
Shi
,
L.
, and
Bayless
,
D. J.
,
2007
, “
Comparison of Boundary Conditions for Predicting the Collection Efficiency of Cyclones
,”
Powder Technol.
,
173
(
1
), pp.
29
37
.10.1016/j.powtec.2006.11.022
7.
Wan
,
G.
,
Sun
,
G.
,
Xue
,
X.
, and
Shi
,
M.
,
2008
, “
Solids Concentration Simulation of Different Size Particles in a Cyclone Separator
,”
Powder Technol.
,
183
(
1
), pp.
94
104
.10.1016/j.powtec.2007.11.019
8.
Wang
,
B.
,
Xu
,
D. L.
,
Chu
,
K. W.
, and
Yu
,
A. B.
,
2006
, “
Numerical Study of Gas–Solid Flow in a Cyclone Separator
,”
Appl. Math. Modell.
,
30
(
11
), pp.
1326
1342
.10.1016/j.apm.2006.03.011
9.
Dietz
,
P. W.
,
1981
, “
Collection Efficiency of Cyclone Separator
,”
AIchE J.
,
27
(
6
), pp.
888
892
.10.1002/aic.690270603
10.
Trefz
,
M.
, and
Muschelknautz
,
E.
,
1993
, “
Extended Cyclone Theory for Gas Flows With High Solid Concentrations
,”
Chem. Eng. Technol.
,
16
(
3
), pp.
153
160
.10.1002/ceat.270160303
11.
Zhou
,
L. X.
, and
Soo
,
S. L.
,
1990
, “
Gas-Solid Flow and Collection of Solids in a Cyclone Separator
,”
Powder Technol.
,
63
(
1
), pp.
45
53
.10.1016/0032-5910(90)80006-K
12.
Avci
,
A.
, and
Karagoz
,
I.
,
2003
, “
Effects of Flow and Geometrical Parameters on the Collection Efficiency in Cyclone Separators
,”
J. Aerosol Sci.
,
34
(
7
), pp.
937
955
.10.1016/S0021-8502(03)00054-5
13.
Karagoz
,
I.
, and
Kaya
,
F.
,
2007
, “
CFD Investigation of the Flow and Heat Transfer Characteristics in a Tangential Inlet Cyclone
,”
Int. Commun. Heat Mass Transfer.
,
34
(
9–10
), pp.
1119
1126
.10.1016/j.icheatmasstransfer.2007.05.017
14.
Nag
,
P. K.
, and
Gupta
,
A. V. S. S. K. S.
,
1999
, “
Fin Heat Transfer Studies in a Cyclone Separator of a Circulating Fluidized Bed
,”
Heat Transfer Eng.
,
20
(
2
), pp.
28
34
.10.1080/014576399271556
15.
Bodo
,
K.
,
1977
, “
Cyclone Separator Vortex Finder With Exterior Heat Fins
,” Canadian Patent File, Patent No. 780525.
16.
Mariani
,
F.
,
Risi
,
F.
, and
Grimaldi
,
C. N.
,
2017
, “
Separation Efficiency and Heat Exchange Optimization in a Cyclone
,”
Sep. Purif. Technol.
,
179
, pp.
393
402
.10.1016/j.seppur.2017.02.024
17.
Wasilewski
,
M.
,
2016
, “
Analysis of the Effects of Temperature and the Share of Solid and Gas Phases on the Process of Separation in a Cyclone Suspension Preheater
,”
Sep. Purif. Technol.
,
168
, pp.
114
123
.10.1016/j.seppur.2016.05.033
18.
Thulasiraman
,
M.
, and
Pitchandi
,
K.
,
2015
, “
Influence of Inlet Velocity of Air and Solid Particle Feed Rate on Holdup Mass and Heat Transfer Characteristics in Cyclone Heat Exchanger
,”
J. Mech. Sci. Technol.
,
29
, pp.
4509
4518
.
19.
Mikulcic
,
H.
,
Vujanovic
,
M.
,
Ashhab
,
M. A.
, and
Duic
,
N.
,
2014
, “
Large Eddy Simulation of a Two-Phase Reacting Swirl Flow Inside a Cement Cyclone
,”
Energy.
,
75
, pp.
89
96
.10.1016/j.energy.2014.04.064
20.
Wasilewski
,
M.
, and
Duda
,
J.
,
2016
, “
Multicriteria Optimisation of First-stage Cyclones in the Clinker Burning System by Means of Numerical Modelling and Experimental Research
,”
Powder Technol.
,
289
, pp.
143
158
.10.1016/j.powtec.2015.11.018
21.
Elsayed
,
K.
, and
Lacor
,
C.
,
2011
, “
The Effect of Cyclone Inlet Dimensions on the Flow Pattern and Performance
,”
Appl. Math. Modell.
,
35
(
4
), pp.
1952
1968
.10.1016/j.apm.2010.11.007
22.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows
,”
J. Fluid Mech.
,
52
(
4
), pp.
609
638
.10.1017/S002211207200268X
23.
Parekh
,
J.
, and
Rzehak
,
R.
,
2018
, “
Euler–Euler Multiphase CFD-Simulation With Full Reynolds Stress Model and Anisotropic Bubble-Induced Turbulence
,”
Int. J. Multiphase Flow
,
99
, pp.
231
245
.10.1016/j.ijmultiphaseflow.2017.10.012
24.
Slack
,
M., D.
,
Prasad
,
R. O.
,
Bakker
,
A.
, and
Boysan
,
F.
,
2000
, “
Advances in Cyclone Modelling Using Unstructured Grids
,”
Trans IChemE
,
78
(
8
), pp.
1098
1104
.10.1205/026387600528373
25.
ANSYS,
2018
, “
Modeling Turbulent Flow, Introductory Fluent Training
,” ANSYS Inc., Canonsburg, PA, Accessed Oct. 7, 2018, http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf
26.
Safikhani
,
H.
,
Akhavan-Behabadi
,
M. A.
,
Shams
,
M.
, and
Rahimyan
,
M. H.
,
2010
, “
Numerical Simulation of Flow Field in Three Types of Standard Cyclone Separators
,”
Adv. Powder Technol.
,
21
(
4
), pp.
435
442
.10.1016/j.apt.2010.01.002
27.
El-Batsh
,
H. M.
,
2013
, “
Improving Cyclone Performance by Proper Selection of the Exit Pipe
,”
Appl. Math. Modell.
,
37
(
7
), pp.
5286
5303
.10.1016/j.apm.2012.10.044
28.
Zhao
,
B.
,
Su
,
Y.
, and
Zhang
,
J.
,
2006
, “
Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone With Conventional Single and Spiral Double Inlet Configuration
,”
Trans IChemE, Part A, Chem. Eng. Res. Des.
,
84
(
12
), pp.
1158
1165
.10.1205/cherd06040
29.
Lapple
,
C. E.
,
1951
, “
Processes Use Many Collector Types
,”
Chem. Eng.
,
58
, pp.
144
151
.
30.
Mothilal
,
T.
,
Pitchandi
,
K.
,
Velukumar
,
V.
, and
Parthiban
,
K.
,
2018
, “
CFD and Statistical Approach for Optimization of Operating Parameters in a Tangential Cyclone Heat Exchanger
,”
J. Appl. Fluid Mech.
,
11
(
2
), pp.
459
466
.10.29252/jafm.11.02.27791
31.
Udaya Bhaskar
,
K.
,
Rama Murthy
,
Y.
,
Ravi Raju
,
M.
,
Tiwari
,
S.
,
Srivastava
,
J. K.
, and
Ramakrishnan
,
N.
,
2007
, “
CFD Simulation and Experimental Validation Studies on Hydrocyclone
,”
Miner. Eng.
,
20
(
1
), pp.
60
71
.10.1016/j.mineng.2006.04.012
32.
Rama Murthy
,
Y.
, and
Udaya Bhaskar
,
K.
,
2012
, “
Parametric CFD Studies on Hydrocyclone
,”
Powder Technol.
,
230
, pp.
36
47
.10.1016/j.powtec.2012.06.048
33.
Siddique
,
W.
,
Shevchuk
,
I. V.
,
El-Gabry
,
L.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2013
, “
On Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Channel With Ribs at 45°
,”
Heat Mass Transfer.
,
49
(
5
), pp.
679
694
.10.1007/s00231-013-1111-5
34.
Siddique
,
W.
,
El-Gabry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2012
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transfer
,
48
(
5
), pp.
735
748
.10.1007/s00231-011-0926-1
35.
Ansys, Inc.,
2017
, ANSYS Workbench Help, Release 17.0,
ANSYS
,
Canonsburg, PA
.
36.
Jihe
,
C.
,
Zhong-An
,
J.
, and
Jushi
,
C.
,
2018
, “
Effect of Inlet Air Volumetric Flow Rate on the Performance of a Two-Stage Cyclone Separator
,”
ACS Omega
,
3
, pp.
13219
13226
.
37.
M'Bouana
,
N. L. P.
,
Lia
,
D.
,
Tanga
,
Y.
,
Yang
,
T.
, and
Lu
,
H.
,
2013
, “
Numerical Simulation of Gas and Particle Flow in Cyclone Separators
,”
AIP Conf. Proc.
,
1547
, pp.
545
554
.
38.
Farzad
,
P.
,
Seyyed
,
H. H.
,
Goodarz
,
A.
, and
Khairy
,
E.
,
2017
, “
Impacts of the Vortex Finder Eccentricity on the Flow Pattern and Performance of a Gas Cyclone
,”
Sep. Purif. Technol.
,
187
, pp.
1
13
.10.1016/j.seppur.2017.06.046
39.
Dzmitry
,
M.
,
Anders
,
G. A.
, and
Tord
,
S. L.
,
2015
, “
Effects of the Inlet Angle on the Flow Pattern and Pressure Drop of a Cyclone With Helical-Roof Inlet
,”
Chem. Eng. Res. Des.
,
102
, pp.
307
321
.10.1016/j.cherd.2015.06.036
40.
Sakura
,
G. B.
, and
Andrew
,
Y. T. L.
,
2015
, “
CFD Simulation of Cyclone Separators to Reduce Air Pollution
,”
Powder Technol.
,
286
, pp.
488
506
.10.1016/j.powtec.2015.08.023
41.
Cortes
,
C.
, and
Gil
,
A.
,
2007
, “
Modeling the Gas and Particle Flow Inside Cyclone Separators
,”
Prog. Energy Combust. Sci.
,
33
(
5
), pp.
409
452
.10.1016/j.pecs.2007.02.001
42.
Faqi
,
Z.
,
Guogang
,
S.
,
Yuming
,
Z.
,
Hui
,
C.
, and
Qing
,
W.
,
2018
, “
Experimental and CFD Study on the Effects of Surface Roughness on Cyclone Performance
,”
Sep. Purif. Technol.
,
193
, pp.
175
183
.10.1016/j.seppur.2017.11.017
43.
Kumar
,
V.
, and
Jha
,
K.
,
2018
, “
Numerical Investigations of the Cone-Shaped Vortex Finders on the Performance of Cyclone Separators
,”
J. Mech. Sci. Technol.
,
32
(
11
), pp.
5293
5303
.10.1007/s12206-018-1028-5
44.
Bunyawanichakul
,
P.
,
Kirkpatrick
,
M. P.
,
Sargison
,
J. E.
, and
Walker
,
G. J.
,
2006
, “
Numerical and Experimental Studies of the Flow Field in a Cyclone Dryer
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1240
1250
.10.1115/1.2354523
45.
Akiyama
,
O.
, and
Kato
,
C.
,
2017
, “
Numerical Investigations of Unsteady Flows and Particle Behavior in a Cyclone Separator
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091302
.10.1115/1.4036589
46.
Jafari
,
P. H.
,
Misiulia
,
D.
,
Hellstrom
,
J. G. I.
, and
Gebart
,
B. R.
,
2019
, “
Modeling of Particle-Laden Cold Flow in a Cyclone Gasifier
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021302
.10.1115/1.4040929
47.
Zhou
,
H.
,
Hu
,
Z.
,
Zang
,
Q.
,
Wang
,
Q.
, and
Lv
,
W.
,
2019
, “
Numerical Study on Gas-Solid Flow Characteristics of Ultra-Light Particles in a Cyclone Separator
,”
Powder Technol.
,
3441
, pp.
784
796
.10.1016/j.powtec.2018.12.054
You do not currently have access to this content.