Abstract

Recently metamaterials made of periodic nanowire arrays, multilayers, and grating structures have been studied for near-field thermal radiation with enhanced coupling of evanescent waves due to surface plasmon/phonon polariton, hyperbolic mode, epsilon-near-zero and epsilon-near-pole (ENP) modes, guided mode, and wave interference. In this work, both effective uniaxial electric permittivity and magnetic permeability of a nanowire-based metamaterial are retrieved theoretically through the far-field radiative properties obtained by finite difference time-domain (FDTD) simulations. The artificial magnetic response of metamaterials, which cannot be obtained by traditional effective medium theory (EMT) based on electric permittivity of constitutes only, is successfully captured by the nonunity magnetic permeability, whose resonant frequency is verified by an inductor-capacitor model. By incorporating the retrieved electric permittivity and magnetic permeability into fluctuational electrodynamics with multilayer uniaxial wave optics, the near-field radiative heat transfer between the metallic nanowire arrays is theoretically studied and spectral near-field heat enhancements are found for both transverse electric and magnetic waves due to artificial magnetic resonances. The understanding and insights obtained here will facilitate the application of metamaterials in near-field radiative transfer.

References

1.
Biehs
,
S.-A.
,
Tschikin
,
M.
,
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Super-Planckian Near-Field Thermal Emission With Phonon-Polaritonic Hyperbolic Metamaterials
,”
Appl. Phys. Lett.
,
102
(
13
), p.
131106
.10.1063/1.4800233
2.
Chang
,
J.-Y.
,
Yang
,
Y.
, and
Wang
,
L.
,
2015
, “
Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications
,”
Int. J. Heat Mass Transfer
,
87
, pp.
237
247
.10.1016/j.ijheatmasstransfer.2015.03.087
3.
Yang
,
Y.
,
Basu
,
S.
, and
Wang
,
L.
,
2013
, “
Radiation-Based Near-Field Thermal Rectification With Phase Transition Materials
,”
Appl. Phys. Lett.
,
103
(
16
), p.
163101
.10.1063/1.4825168
4.
Yang
,
Y.
,
Basu
,
S.
, and
Wang
,
L.
,
2015
, “
Vacuum Thermal Switch Made of Phase Transition Materials Considering Thin Film and Substrate Effects
,”
J. Quant. Spectrosc. Radiat. Transfer
,
158
, pp.
69
77
.10.1016/j.jqsrt.2014.12.002
5.
Li
,
P.
,
Lewin
,
M.
,
Kretinin
,
A. V.
,
Caldwell
,
J. D.
,
Novoselov
,
K. S.
,
Taniguchi
,
T.
,
Watanabe
,
K.
,
Gaussmann
,
F.
, and
Taubner
,
T.
,
2015
, “
Hyperbolic Phonon-Polaritons in Boron Nitride for Near-Field Optical Imaging and Focusing
,”
Nat. Commun.
,
6
, p.
7507
.10.1038/ncomms8507
6.
Schilling
,
R.
,
Schütz
,
H.
,
Ghadimi
,
A. H.
,
Sudhir
,
V.
,
Wilson
,
D. J.
, and
Kippenberg
,
T. J.
,
2016
, “
Near-Field Integration of a SiN Nanobeam and a Microcavity for Heisenberg-Limited Displacement Sensing
,”
Phys. Rev. Appl.
,
5
(
16
), p.
054019
.10.1103/PhysRevApplied.5.054019
7.
Basu
,
S.
, and
Wang
,
L. P.
,
2013
, “
Near-Field Radiative Heat Transfer Between Doped Silicon Nanowire Arrays
,”
Appl. Phys. Lett.
,
102
(
5
), p.
053101
.10.1063/1.4790143
8.
Liu
,
X.
,
Wang
,
L.
, and
Zhang
,
Z. M.
,
2015
, “
Near-Field Thermal Radiation: Recent Progress and Outlook
,”
Nanoscale Microscale Therm. Eng.
,
19
(
2
), pp.
98
126
.10.1080/15567265.2015.1027836
9.
Biehs
,
S.-A.
,
Tschikin
,
M.
, and
Ben-Abdallah
,
P.
,
2012
, “
Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field
,”
Phys. Rev. Lett.
,
109
(
10
), p.
104301
.10.1103/PhysRevLett.109.104301
10.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2013
, “
Near-Field Thermal Radiation Between Hyperbolic Metamaterials: Graphite and Carbon Nanotubes
,”
Appl. Phys. Lett.
,
103
(
21
), p.
213102
.10.1063/1.4832057
11.
Shi
,
J.
,
Liu
,
B.
,
Li
,
P.
,
Ng
,
L. Y.
, and
Shen
,
S.
,
2015
, “
Near-Field Energy Extraction With Hyperbolic Metamaterials
,”
Nano Lett.
,
15
(
2
), pp.
1217
1221
.10.1021/nl504332t
12.
Molesky
,
S.
,
Dewalt
,
C. J.
, and
Jacob
,
Z.
,
2013
, “
High Temperature Epsilon-Near-Zero and Epsilon-Near-Pole Metamaterial Emitters for Thermophotovoltaics
,”
Opt. Exp.
,
21
(
S1
), pp.
A96
A110
.10.1364/OE.21.000A96
13.
Starko-Bowes
,
R.
,
Atkinson
,
J.
,
Newman
,
W.
,
Hu
,
H.
,
Kallos
,
T.
,
Palikaras
,
G.
,
Fedosejevs
,
R.
,
Pramanik
,
S.
, and
Jacob
,
Z.
,
2015
, “
Optical Characterization of Epsilon-Near-Zero, Epsilon-Near-Pole, and Hyperbolic Response in Nanowire Metamaterials
,”
J. Opt. Soc. Am. B
,
32
(
10
), pp.
2074
2080
.10.1364/JOSAB.32.002074
14.
Rodriguez
,
A. W.
,
Ilic
,
O.
,
Bermel
,
P.
,
Celanovic
,
I.
,
Joannopoulos
,
J. D.
,
Soljačić
,
M.
, and
Johnson
,
S. G.
,
2011
, “
Frequency-Selective Near-Field Radiative Heat Transfer Between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials
,”
Phys. Rev. Lett.
,
107
(
11
), p.
114302
.10.1103/PhysRevLett.107.114302
15.
Huang
,
Y.
,
Ma
,
L.
,
Hou
,
M.
, and
Zhang
,
Z.
,
2016
, “
Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals
,”
Plasmonics
,
11
(
5
), pp.
1377
1383
.10.1007/s11468-016-0187-4
16.
Pendry
,
J. B.
,
1999
, “
Radiative Exchange of Heat Between Nanostructures
,”
J. phys. Condens. Mater.
,
11
(
35
), pp.
6621
6633
.10.1088/0953-8984/11/35/301
17.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
18.
Tschikin
,
M.
,
Biehs
,
S.-A.
,
Ben-Abdallah
,
P.
,
Lang
,
S.
,
Petrov
,
A. Y.
, and
Eich
,
M.
,
2015
, “
Radiative Heat Flux Predictions in Hyperbolic Metamaterials
,”
J. Quant. Spectrosc. Radiat. Transfer
,
158
, pp.
17
26
.10.1016/j.jqsrt.2014.11.013
19.
Chang
,
J.-Y.
,
Basu
,
S.
, and
Wang
,
L.
,
2015
, “
Indium Tin Oxide Nanowires as Hyperbolic Metamaterials for Near-Field Radiative Heat Transfer
,”
J. Appl. Phys.
,
117
(
5
), p.
054309
.10.1063/1.4907581
20.
Francoeur
,
M.
,
Pinar Mengüç
,
M.
, and
Vaillon
,
R.
,
2009
, “
Solution of Near-Field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green's Functions and the Scattering Matrix Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
18
), pp.
2002
2018
.10.1016/j.jqsrt.2009.05.010
21.
Biehs
,
S.-A.
,
Rosa
,
F. S. S.
, and
Ben-Abdallah
,
P.
,
2011
, “
Modulation of Near-Field Heat Transfer Between Two Gratings
,”
Appl. Phys. Lett.
,
98
(
24
), p.
243102
.10.1063/1.3596707
22.
Liu
,
X.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Enhanced Near-Field Thermal Radiation and Reduced Casimir Stiction Between Doped-Si Gratings
,”
Phys. Rev. A
,
91
(
6
), p.
062510
.10.1103/PhysRevA.91.062510
23.
Choy
,
T. C.
,
1999
,
Effective Medium Theory: Principles and Applications
,
Oxford University Press
,
Oxford, UK
.
24.
Wang
,
H.
, and
Wang
,
L.
,
2013
, “
Perfect Selective Metamaterial Solar Absorbers
,”
Opt. Exp.
,
21
(
S6
), pp.
A1078
A1093
.10.1364/OE.21.0A1078
25.
Joulain
,
K.
,
Drevillon
,
J.
, and
Ben-Abdallah
,
P.
,
2010
, “
Noncontact Heat Transfer Between Two Metamaterials
,”
Phys. Rev. B
,
81
(
16
), p.
165119
.10.1103/PhysRevB.81.165119
26.
Chang
,
J.-Y.
,
Basu
,
S.
,
Yang
,
Y.
, and
Wang
,
L.
,
2016
, “
Near-Field Thermal Radiation Between Homogeneous Dual Uniaxial Electromagnetic Metamaterials
,”
J. Appl. Phys.
,
119
(
21
), p.
213108
.10.1063/1.4953253
27.
Qi
,
J.
,
Qiu
,
J.
, and
Han
,
C.
,
2014
, “
Homogenization Models for a Simple Dielectric-Composite Slab Upon Oblique Incidence
,”
Int. J. Antennas Propag.
,
2014
, pp.
1
12
.10.1155/2014/787613
28.
Zhou
,
N.
, and
Xu
,
X.
,
2015
, “
Metamaterial-Based Perfect Absorbers for Efficiently Enhancing Near Field Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
167
, pp.
156
163
.10.1016/j.jqsrt.2015.08.015
29.
Bai
,
Y.
,
Jiang
,
Y.
, and
Liu
,
L.
,
2015
, “
Multi-Band Near-Field Radiative Heat Transfer Between Two Anisotropic Fishnet Metamaterials
,”
J. Quant. Spectrosc. Radiat. Transfer
,
158
, pp.
36
42
.10.1016/j.jqsrt.2015.01.010
30.
Papadakis
,
G. T.
,
Yeh
,
P.
, and
Atwater
,
H. A.
,
2015
, “
Retrieval of Material Parameters for Uniaxial Metamaterials
,”
Phys. Rev. B
,
91
(
15
), p.
155406
.10.1103/PhysRevB.91.155406
31.
Menzel
,
C.
,
Rockstuhl
,
C.
,
Paul
,
T.
,
Lederer
,
F.
, and
Pertsch
,
T.
,
2008
, “
Retrieving Effective Parameters for Metamaterials at Oblique Incidence
,”
Phys. Rev. B
,
77
(
19
), p.
195328
.10.1103/PhysRevB.77.195328
32.
Park
,
K.
, and
Zhang
,
Z.
,
2013
, “
Fundamentals and Applications of Near-Field Radiative Energy Transfer
,”
Front. Heat Mass Transfer
,
4
(
1
), p.
013001
.http://dx.doi.org/10.5098/hmt.v4.1.3001
33.
Basu
,
S.
,
Zhang
,
Z. M.
, and
Fu
,
C. J.
,
2009
, “
Review of Near-Field Thermal Radiation and Its Application to Energy Conversion
,”
Int. J. Energy Res.
,
33
(
13
), pp.
1203
1232
.10.1002/er.1607
34.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2014
, “
Near-Field Radiative Heat Transfer With Doped-Silicon Nanostructured Metamaterials
,”
Int. J. Heat Mass Transfer
,
73
, pp.
389
398
.10.1016/j.ijheatmasstransfer.2014.02.021
35.
Chang
,
J.-Y.
,
Wang
,
H.
, and
Wang
,
L.
,
2017
, “
Tungsten Nanowire Metamaterials as Selective Solar Thermal Absorbers by Excitation of Magnetic Polaritons
,”
ASME J. Heat Transfer
,
139
(
5
), pp.
052401
052408
.10.1115/1.4034845
36.
Carr
,
G.
,
Perkowitz
,
S.
,
Tanner
,
D. J. I.
, and
Waves
,
M.
,
1985
, “
Far-Infrared Properties of Inhomogeneous Materials
,”
Infrared Millimeter Waves
,
13
, pp.
171
263
.
37.
Yang
,
Y.
, and
Wang
,
L.
,
2016
, “
Spectrally Enhancing Near-Field Radiative Transfer Between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps
,”
Phys. Rev. Lett.
,
117
(
4
), p.
044301
.10.1103/PhysRevLett.117.044301
38.
Yang
,
Y.
,
Sabbaghi
,
P.
, and
Wang
,
L.
,
2017
, “
Effect of Magnetic Polaritons in SiC Deep Gratings on Near-Field Radiative Transfer
,”
Int. J. Heat Mass Transfer
,
108
, pp.
851
859
.10.1016/j.ijheatmasstransfer.2016.12.061
You do not currently have access to this content.