Abstract

In this study, a hypersonic plasma setup was constructed based on a vortex plasma heater with prenozzle gas-dynamic insertion. The prenozzle allows the improvement of the characteristics of the vacuum system according to the necessities of the experiments. The plasma setup produces a hypersonic thermal flow, which is capable to test the thermal oxidation of ultrahigh temperature ceramics (UHTC) composites, such as zirconium diboride (ZrB2). Thereby, ZrB2 samples were prepared with a variation of 10, 20, and 30% of silicon carbide (SiC) in volume, in order to investigate the oxidation mechanisms and microstructural properties of the samples tested under hypersonic thermal flow. The results of the oxidation tests showed that the samples with 10 and 30% of SiC undergo to the active oxidation and forms an unstable and fragile ZrO2 oxide. The formed ZrO2 does not withstand the drag force and the thermal flux of the hypersonic plasma jet, partially volatilizing the oxide layer, causing an accentuated loss of mass. For the oxidation tests of the sample with 20% of SiC, the gain of mass was observed due to the formation of ZrSiO4 passivation layer, which is a stable oxide and promotes mechanical resistance, and low degradation rate. These results can be associated with the variation of SiC, which demonstrates an ideal proportion of 20% of SiC in ZrB2, which influences the oxidation mechanisms and produce a protective layer.

References

1.
Sakraker
,
I.
,
2016
, “
Aerothermodynamics of Pre-Flight and In-Flight Testing Methodologies for Atmospheric Entry Probes
,” Ph.D. thesis,
Université de Liège
,
Liège, Belgium
.
2.
Cioeta
,
M.
,
Di Vita
,
G.
,
Signorelli Maria
,
T.
,
Bianco
,
G.
,
Cutroni
,
M.
,
Damiani
,
F.
,
Ferretti
,
V.
, and
Rotondo
,
A.
,
2016
, “
Design, Qualification, Manufacturing and Integration of IXV Ablative Thermal Protection System
,”
Acta Astronaut.
,
124
, pp.
90
101
.10.1016/j.actaastro.2015.12.026
3.
Purpura
,
C.
,
De Filippis
,
F.
,
Barrera
,
P.
, and
Mandanici
,
D.
,
2008
, “
Experimental Characterisation of the CIRA Plasma Wind Tunnel SCIROCCO Test Section
,”
Acta Astronaut.
,
62
(
6–7
), pp.
410
421
.10.1016/j.actaastro.2008.01.008
4.
Saccone
,
G.
,
Gardi
,
R.
,
Alfano
,
D.
,
Ferrigno
,
A.
, and
Del Vecchio
,
A.
,
2016
, “
Laboratory, on-Ground and in-Flight Investigation of Ultra High Temperature Ceramic Composite Materials
,”
Aerosp. Sci. Technol.
,
58
, pp.
490
497
.10.1016/j.ast.2016.09.004
5.
Buffenoir
,
F.
,
Zeppa
,
C.
,
Pichon
,
T.
, and
Girard
,
F.
,
2016
, “
Development and Flight Qualification of the C–SiC Thermal Protection Systems for the IXV
,”
Acta Astronaut.
,
124
, pp.
85
89
.10.1016/j.actaastro.2016.02.010
6.
Yang
,
Y.
,
Li
,
K.
,
Zhao
,
Z.
, and
Li
,
H.
,
2016
, “
Ablation Resistance of HfC-SiC Coating Prepared by Supersonic Atmospheric Plasma Spraying for SiC-Coated C/C Composites
,”
Ceram. Int.
,
42
(
4
), pp.
4768
4774
.10.1016/j.ceramint.2015.11.161
7.
Dabalà
,
M.
,
Hilfer
,
P.
, and
Auweter-Kurtz
,
G.
,
1995
, “
Investigation of the Oxidation Behaviour of Thermal Protection Materials Supported by Mass Spectrometry
,” Proceedings of the 2nd European Symposium held in ESTEC, Noordwijk, The Netherlands, Nov.
21
25
.
8.
Monteverde
,
F.
,
Cecere
,
A.
, and
Savino
,
R.
,
2017
, “
Thermo-Chemical Surface Instabilities of SiC-ZrB2 Ceramics in High Enthalpy Dissociated Supersonic Airflows
,”
J. Eur. Ceram. Soc.
,
37
(
6
), pp.
2325
2341
.10.1016/j.jeurceramsoc.2017.01.018
9.
Savino
,
R.
,
Criscuolo
,
L.
,
Di Martino
,
G. D.
, and
Mungiguerra
,
S.
,
2018
, “
Aero-Thermo-Chemical Characterization of Ultra-High-Temperature Ceramics for Aerospace Applications
,”
J. Eur. Ceram. Soc.
,
38
(
8
), pp.
2937
2953
.10.1016/j.jeurceramsoc.2017.12.043
10.
Takahashi
,
Y.
, and
Yamada
,
K.
,
2018
, “
Aerodynamic Heating of Inflatable Aeroshell in Orbital Reentry
,”
Acta Astronaut.
,
152
, pp.
437
448
.10.1016/j.actaastro.2018.08.003
11.
Bertin
,
J. J.
, and
Cummings
,
R. M.
,
2006
, “
Critical Hypersonic Aerothermodynamic Phenomena
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
129
157
.10.1146/annurev.fluid.38.050304.092041
12.
Bletzinger
,
P.
,
Ganguly
,
B. N.
,
Van Wie
,
D.
, and
Garscadden
,
A.
,
2005
, “
Plasmas in High Speed Aerodynamics
,”
J. Phys. D. Appl. Phys.
,
38
(
1
), pp. 33–57.
13.
Anderson
,
J. D.
,
2019
,
Hypersonic and High-Temperature Gas Dynamics
, 3rd ed., American Institute of Aeronautics and Astronautics, Inc., Reston,VA.
14.
Huang
,
G.
,
Zuo
,
F.
, and
Qiao
,
W.
,
2018
, “
Design Method of Internal Waverider Inlet Under Non-Uniform Upstream for Inlet/Forebody Integration
,”
Aerosp. Sci. Technol.
,
74
, pp.
160
172
.10.1016/j.ast.2018.01.012
15.
Agostinelli
,
P. W.
,
Trifoni
,
E.
, and
Savino
,
R.
,
2019
, “
Aerothermodynamic Analyses and Redesign of GHIBLI Plasma Wind Tunnel Hypersonic Diffuser
,”
Aerosp. Sci. Technol.
,
87
, pp.
218
229
.10.1016/j.ast.2019.02.023
16.
Xiang
,
H.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2019
, “
Theoretical Predictions on Intrinsic Lattice Thermal Conductivity of ZrB 2
,”
J. Eur. Ceram. Soc.
,
39
(
10
), pp.
2982
2988
.10.1016/j.jeurceramsoc.2019.04.011
17.
Borrelli
,
R.
,
Riccio
,
A.
,
Tescione
,
D.
,
Gardi
,
R.
, and
Marino
,
G.
,
2009
, “
Thermo-Structural Behaviour of an UHTC Made Nose Cap of a Reentry Vehicle
,”
Acta Astronaut.
,
65
(
3–4
), pp.
442
456
.10.1016/j.actaastro.2009.02.016
18.
Kumar
,
S.
, and
Mahulikar
,
S. P.
,
2016
, “
Aero-Thermal Analysis of Lifting Body Configurations in Hypersonic Flow
,”
Acta Astronaut.
,
126
, pp.
382
394
.10.1016/j.actaastro.2016.05.011
19.
Opeka
,
M. M.
,
Talmy
,
I. G.
, and
Zaykoski
,
J. A.
,
2004
, “
Oxidation-Based Materials Selection for 2000 °C + Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience
,”
J. Mater. Sci.
,
39
(
19
), pp.
5887
5904
.10.1023/B:JMSC.0000041686.21788.77
20.
Monteverde
,
F.
,
Bellosi
,
A.
, and
Scatteia
,
L.
,
2008
, “
Processing and Properties of Ultra-High Temperature Ceramics for Space Applications
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
415
421
.10.1016/j.msea.2007.08.054
21.
Monteverde
,
F.
,
Bellosi
,
A.
, and
Guicciardi
,
S.
,
2002
, “
Processing and Properties of Zirconium Diboride-Based Composites
,”
J. Eur. Ceram. Soc.
,
22
(
3
), pp.
279
288
.10.1016/S0955-2219(01)00284-9
22.
Rivier
,
M.
,
Lachaud
,
J.
, and
Congedo
,
P. M.
,
2019
, “
Ablative Thermal Protection System Under Uncertainties Including Pyrolysis Gas Composition
,”
Aerosp. Sci. Technol.
,
84
, pp.
1059
1069
.10.1016/j.ast.2018.11.048
23.
Fahrenholtz
,
W. G.
,
2007
, “
Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC-Depleted Region
,”
J. Am. Ceram. Soc.
,
90
(
1
), pp.
143
148
.10.1111/j.1551-2916.2006.01329.x
24.
Zhukov
,
M. F.
,
Zasypkin
,
I. M.
,
Timoshevskii
,
A. N.
,
Mikhailov
,
B. I.
, and
Desyatkov
,
G. A.
,
2007
,
Thermal Plasma Torches: Design, Characteristics, Application
,
Cambridge International Science Publishing
,
Cambridge, UK
.
25.
Colombo
,
V.
,
Concetti
,
A.
,
Ghedini
,
E.
,
Dallavalle
,
S.
, and
Vancini
,
M.
,
2008
, “
Understanding Plasma Fluid Dynamics Inside Plasma Torches Through Advanced Modeling
,”
IEEE Trans. Plasma Sci.
,
36
(
2
), pp.
389
402
.10.1109/TPS.2008.918664
26.
ASTM,
2015
, “
Standard Practice for Measuring Plasma Arc Gas Enthalpy by Energy Balance 1
,” ASTM,
West Conshohocken, PA
, Standard No. ASTM E341-08(2015).
27.
Boulos
,
M. I.
,
Fauchais
,
P.
, and
Pfender
,
E.
,
1994
,
Thermal Plasma Fundamentals and Applications
, 1st ed.,
Springer Science+Business Media, LLC
,
New York
.
28.
Oliveira Juliani
,
M.
,
Oliveria
,
C. D.
, and
Rocha
,
R. M.
,
2015
, “
Pressureless Sintering of ZrB2 With β-SiC Addition
,”
Mater. Sci. Forum
,
820
, pp.
250
255
.10.4028/www.scientific.net/MSF.820.250
29.
Maria
,
R.
,
Sene
,
F. F.
,
Juliani
,
M. D. O.
, and
Davi
,
C. O.
,
2019
, “
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2ß-Sic Composites
,”
J. Aerosp. Technol. Manage.
,
11
, pp.
1
13
.10.5028/jatm.v11.1049
30.
Monteverde
,
F.
,
Savino
,
R.
,
Fumo
,
M. D. S.
, and
Di Maso
,
A.
,
2010
, “
Plasma Wind Tunnel Testing of Ultra-High Temperature ZrB2-SiC Composites Under Hypersonic Re-Entry Conditions
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2313
2321
.10.1016/j.jeurceramsoc.2010.01.029
31.
Paul
,
A.
,
Binner
,
J.
, and
Vaidhyanathan
,
B.
,
2014
, “
UHTC Composites for Hypersonic Applications
,”
Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications
,
Wiley
,
Hoboken, NJ
, pp.
144
166
.
32.
Zhang
,
X.
,
Hu
,
P.
,
Han
,
J.
, and
Meng
,
S.
,
2008
, “
Ablation Behavior of ZrB2-SiC Ultra High Temperature Ceramics Under Simulated Atmospheric Re-Entry Conditions
,”
Compos. Sci. Technol.
,
68
(
7–8
), pp.
1718
1726
.10.1016/j.compscitech.2008.02.009
33.
Kaiser
,
A.
,
Lobert
,
M.
, and
Telle
,
R.
,
2008
, “
Thermal Stability of Zircon (ZrSiO4)
,”
J. Eur. Ceram. Soc.
,
28
(
11
), pp.
2199
2211
.10.1016/j.jeurceramsoc.2007.12.040
34.
Huang
,
D.
,
Zhang
,
M.
,
Huang
,
Q.
,
Wang
,
L.
,
Tang
,
X.
,
Yang
,
X.
, and
Tong
,
K.
,
2015
, “
Fabrication and Ablation Property of Carbon/Carbon Composites With Novel SiC–ZrB2 Coating
,”
Trans. Nonferrous Met. Soc. China
,
25
(
11
), pp.
3708
3715
.10.1016/S1003-6326(15)64012-2
35.
Wang
,
S.
,
Li
,
H.
,
Ren
,
M.
,
Zuo
,
Y.
,
Yang
,
M.
,
Zhang
,
J.
, and
Sun
,
J.
,
2017
, “
Microstructure and Ablation Mechanism of C/C-ZrC-SiC Composites in a Plasma Flame
,”
Ceram. Int.
,
43
(
14
), pp.
10661
10667
.10.1016/j.ceramint.2017.04.089
36.
Kubota
,
Y.
,
Arai
,
Y.
,
Yano
,
M.
,
Inoue
,
R.
,
Goto
,
K.
, and
Kogo
,
Y.
,
2019
, “
Oxidation and Recession of Plain Weave Carbon Fiber Reinforced ZrB2-SiC-ZrC in Oxygen–Hydrogen Torch Environment
,”
J. Eur. Ceram. Soc.
,
39
(
9
), pp.
2812
2823
.10.1016/j.jeurceramsoc.2019.03.010
37.
Liu
,
H.-L.
,
Liu
,
J.-X.
,
Liu
,
H.-T.
, and
Zhang
,
G.-J.
,
2015
, “
Changed Oxidation Behavior of ZrB2–SiC Ceramics With the Addition of ZrC
,”
Ceram. Int.
,
41
(
6
), pp.
8247
8251
.10.1016/j.ceramint.2015.02.150
38.
Ren
,
X.
,
Li
,
H.
,
Chu
,
Y.
,
Fu
,
Q.
, and
Li
,
K.
,
2014
, “
Preparation of Oxidation Protective ZrB2-SiC Coating by in-Situ Reaction Method on SiC-Coated Carbon/Carbon Composites
,”
Surf. Coat. Technol.
,
247
, pp.
61
67
.10.1016/j.surfcoat.2014.03.017
39.
Li
,
J.
,
Yang
,
X.
,
Su
,
Z.
,
Xue
,
L.
,
Zhong
,
P.
,
Li
,
S.
,
Huang
,
Q.
, and
Liu
,
H.
,
2016
, “
Effect of ZrC–SiC Content on Microstructure and Ablation Properties of C/C Composites
,”
Trans. Nonferrous Met. Soc. China
,
26
(
10
), pp.
2653
2664
.10.1016/S1003-6326(16)64392-3
40.
Tului
,
M.
,
Lionetti
,
S.
,
Pulci
,
G.
,
Rocca
,
E.
,
Valente
,
T.
, and
Marino
,
G.
,
2008
, “
Effects of Heat Treatments on Oxidation Resistance and Mechanical Properties of Ultra High Temperature Ceramic Coatings
,”
Surf. Coat. Technol.
,
202
(
18
), pp.
4394
4398
.10.1016/j.surfcoat.2008.04.015
41.
Fang
,
C.
,
Yang
,
X.
,
He
,
K.
,
Chen
,
L.
,
Zeng
,
G.
,
Shi
,
A.
,
Huang
,
Q.
, and
Huang
,
B.
,
2019
, “
Microstructure and Ablation Properties of La2O3 Modified C/C-SiC Composites Prepared Via Precursor Infiltration Pyrolysis
,”
J. Eur. Ceram. Soc.
,
39
(
4
), pp.
762
772
.10.1016/j.jeurceramsoc.2018.11.041
42.
Essiptchouk
,
A. M.
,
Charakhovski
,
L. I.
,
Filho
,
G. P.
,
Maciel
,
H. S.
,
Otani
,
C.
, and
Barros
,
E. A.
,
2009
, “
Thermal and Power Characteristics of Plasma Torch With Reverse Vortex
,”
J. Phys. D. Appl. Phys.
,
42
(
17
), p.
175205
.10.1088/0022-3727/42/17/175205
You do not currently have access to this content.