Abstract

This paper is devoted to study the reflection of thermoelastic plane waves from the thermally insulated stress-free boundary of a homogeneous, isotropic and thermally conducting elastic half-space. A new linear theory of generalized thermoelasticity under heat transfer with memory-dependent derivative (MDD) is employed to address this study. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent vertically shear-type wave may travel with distinct phase speeds. The formulae for various reflection coefficients and their respective energy ratios are determined in case of an incident coupled longitudinal elastic wave at the thermally insulated stress-free boundary of the medium. The results for the reflection coefficients and their respective energy ratios for various values of the angle of incidence are computed numerically and presented graphically for copper-like material and discussed.

References

1.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity
,
Imperial College Press
,
London
.
2.
Diethelm
,
K.
,
2010
,
Analysis of Fractional Differential Equation: An Application Oriented Exposition Using Differential Operators of Caputo Type
,
Springer
,
Berlin
.
3.
Wang
,
J. L.
, and
Li
,
H. F.
,
2011
, “
Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1562
1567
.10.1016/j.camwa.2011.04.028
4.
Cattaneo
,
C.
,
1958
, “
Sur Une Forme de I'equation de la Chaleur Eliminant le Paradoxe D'une Propagation Instantanee
,”
C. R. Acad. Sci.
,
247
, pp.
431
433
.https://www.worldcat.org/title/sur-une-forme-de-lequation-de-la-chaleur-eliminant-le-paradoxe-dune-propagation-instantanee/oclc/469140276
5.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1991
, “
A Re-Examination of the Basic Postulates of Thermomechanics
,”
Proc. R. Soc. London Ser. A
,
432
(
1885
), pp.
171
194
.10.1098/rspa.1991.0012
6.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.10.1016/0022-5096(67)90024-5
7.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(
1
), pp.
1
7
.10.1007/BF00045689
8.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stress.
,
15
(
2
), pp.
253
264
.10.1080/01495739208946136
9.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
(
3
), pp.
189
208
.10.1007/BF00044969
10.
Sherief
,
H. H.
,
El-Sayed
,
A.
, and
El-Latief
,
A.
,
2010
, “
Fractional Order Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
269
275
.10.1016/j.ijsolstr.2009.09.034
11.
Youssef
,
H.
,
2010
, “
Theory of Fractional Order Generalized Thermoelasticity
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061301
.10.1115/1.4000705
12.
Ezzat
,
M. A.
, and
Fayik
,
M. A.
,
2011
, “
Fractional Order Theory of Thermoelastic Diffusion
,”
J. Therm. Stress.
,
34
(
8
), pp.
851
872
.10.1080/01495739.2011.586274
13.
Yu
,
Y. J.
,
Hu
,
W.
, and
Tian
,
X. G.
,
2014
, “
A Novel Generalized Thermoelasticity Model Based on Memory-Dependent Derivative
,”
Int. J. Eng. Sci.
,
81
, pp.
123
134
.10.1016/j.ijengsci.2014.04.014
14.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2014
, “
Generalized Thermo-Viscoelasticity With Memory-Dependent Derivatives
,”
Int. J. Mech. Sci.
,
89
, pp.
470
475
.10.1016/j.ijmecsci.2014.10.006
15.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2015
, “
A Novel Magneto-Thermoelasticity Theory With Memory-Dependent Derivative
,”
J. Electromagn. Wave
,
29
(
8
), pp.
1018
1031
.10.1080/09205071.2015.1027795
16.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and
El-Bary
,
A. A.
,
2016
, “
Modeling of Memory-Dependent Derivatives in Generalized Thermoelasticity
,”
Eur. Phys. J. Plus
,
131
(
10
), pp.
131
372
.10.1140/epjp/i2016-16372-3
17.
Lotfy
,
K.
, and
Sarkar
,
N.
,
2017
, “
Memory-Dependent Derivatives for Photothermal Semiconducting Medium in Generalized Thermoelasticity With Two-Temperature
,”
Mech. Time-Depend. Mater.
,
21
, pp.
15
30
.10.1007/s11043-017-9340-5
18.
Sarkar
,
N.
,
Ghosh
,
D.
, and
Lahiri
,
A.
,
2019
, “
A Two-Dimensional Magneto-Thermoelastic Problem Based on a New Two-Temperature Generalized Thermoelasticity Model With Memory-Dependent Derivative
,”
Mech. Adv. Mater. Struct.
,
26
(
11
), pp.
957
966
.10.1080/15376494.2018.1432784
19.
Sarkar
,
N.
, and
Mondal
,
S.
,
2019
, “
Transient Responses in a Two-Temperature Thermoelastic Infinite Medium Having Cylindrical Cavity Due to Moving Heat Source With Memory-Dependent Derivative
,”
ZAMM-Z. Angew. Math. Mech.
,
99
(
6
), p. e201800343.10.1002/zamm.201800343
20.
Nayfeh
,
A. H.
, and
Nemat-Nasser
,
S.
,
1972
, “
Electromagneto-Thermoelastic Plane Waves in Solids With Thermal Relaxation
,”
ASME J. Appl. Mech.
,
39
(
1
), pp.
108
113
.10.1115/1.3422596
21.
Agarwal
,
V. K.
,
1979
, “
On Electromagneto-Thermoelastic Plane Waves
,”
Acta Mech.
,
34
(
3–4
), pp.
181
191
.10.1007/BF01227983
22.
Roychoudhuri
,
S. K.
,
1985
, “
Effects of Rotation and Relaxation Times on Plane Waves in Generalized Thermoelasticity
,”
J. Elasticity
,
15
, pp.
59
68
.10.1007/BF00041305
23.
Sinha
,
S. B.
, and
Elsibai
,
K. A.
,
1996
, “
Reflection of Thermoelastic Waves at a Solid Half-Space With Two Relaxation Times
,”
J. Therm. Stress.
,
19
, pp.
763
777
.10.1080/01495739608946205
24.
Chandrasekharaiah
,
D. S.
,
1996
, “
Thermoelastic Plane Waves Without Energy Dissipation
,”
Mech. Res. Commun.
,
23
(
5
), pp.
549
555
.10.1016/0093-6413(96)00056-0
25.
Roychoudhuri
,
S. K.
, and
Mukhopadhyay
,
S.
,
2000
, “
Effect of Rotation and Relaxation Times on Plane Waves in Generalized Thermo-Visco-Elasticity
,”
Int. J. Math. Math. Sci.
,
23
(
7
), pp.
497
505
.10.1155/S0161171200001356
26.
Sharma
,
J. N.
,
Kumar
,
V.
, and
Chand
,
D.
,
2003
, “
Reflection of Generalized Thermoelastic Waves From the Boundary of a Half Space
,”
J. Therm. Stress.
,
26
(
10
), pp.
925
942
.10.1080/01495730306342
27.
Das
,
N. C.
,
Lahiri
,
A.
,
Sarkar
,
S.
, and
Basu
,
S.
,
2008
, “
Reflection of Generalized Thermoelastic Waves From Isothermal and Insulated Boundaries of a Half Space
,”
Comput. Math. Appl.
,
56
(
11
), pp.
2795
2805
.10.1016/j.camwa.2008.05.042
28.
Othman
,
M. I. A.
, and
Song
,
Y.
,
2008
, “
Reflection of Magneto-Thermoelastic Waves With Two Relaxation Times and Temperature Dependent Elastic Moduli
,”
Appl. Math. Model.
,
32
(
4
), pp.
483
500
.10.1016/j.apm.2007.01.001
29.
Sharma
,
J. N.
,
Grover
,
D.
, and
Kaur
,
D.
,
2011
, “
Mathematical Modelling and Analysis of Bulk Waves in Rotating Generalized Thermoelastic Media With Voids
,”
Appl. Math. Model.
,
35
(
7
), pp.
3396
3407
.10.1016/j.apm.2011.01.014
30.
Allam
,
M. N. M.
,
Rida
,
S. Z.
,
Abo-Dahab
,
S. M.
,
Mohamed
,
R. A.
, and
Kilany
,
A. A.
,
2014
, “
GL Model on Reflection of P and SV-Waves From the Free Surface of Thermoelastic Diffusion Solid Under Influence of the Electromagnetic Field and Initial Stress
,”
J. Therm. Stress.
,
37
(
4
), pp.
471
487
.10.1080/01495739.2013.870861
31.
Biswas
,
S.
, and
Sarkar
,
N.
,
2018
, “
Fundamental Solution of the Steady Oscillations Equations in Porous Thermoelastic Medium With Dual-Phase-Lag Model
,”
Mech. Mater.
,
126
, pp.
140
147
.10.1016/j.mechmat.2018.08.008
32.
Li
,
Y.
,
Wang
,
W.
,
Wei
,
P.
, and
Wang
,
C.
,
2018
, “
Reflection and Transmission of Elastic Waves at an Interface With Consideration of Couple Stress and Thermal Wave Effects
,”
Meccanica
,
53
(
11–12
), pp.
2921
2938
.10.1007/s11012-018-0842-2
33.
Sarkar
,
N.
, and
Tomar
,
S. K.
,
2019
, “
Plane Waves in Nonlocal Thermoelastic solid With Voids
,”
J. Therm. Stress.
,
42
(
5
), pp.
580
606
.10.1080/01495739.2018.1554395
34.
Mondal
,
S.
,
Sarkar
,
N.
, and
Sarkar
,
N.
,
2019
, “
Waves in Dual-Phase-Lag Thermoelastic Materials With Voids Based on Eringen's Nonlocal Elasticity
,”
J. Therm. Stress.
,
42
(
8
), pp.
1035
1050
.10.1080/01495739.2019.1591249
35.
Das
,
N.
,
Sarkar
,
N.
, and
Lahiri
,
A.
,
2019
, “
Reflection of Plane Waves From the Stress-Free Isothermal and Insulated Boundaries of a Nonlocal Thermoelastic Solid
,”
Appl. Math. Model.
,
73
, pp.
526
544
.10.1016/j.apm.2019.04.028
36.
Sarkar
,
N.
,
De
,
S.
, and
Sarkar
,
N.
,
2019
, “
Memory Response in Plane Wave Reflection in Generalized Magneto-Thermoelasticity
,”
J. Electromagn. Wave
,
33
(
10
), pp.
1354
1374
.10.1080/09205071.2019.1608318
37.
Sarkar
,
N.
,
De
,
S.
, and
Sarkar
,
N.
,
2019
, “
Reflection of Thermoelastic Waves From the Isothermal Boundary of a Solid Half-Space Under Memory-Dependent Heat Transfer
,”
Wave Random Complex
, epub.https://www.tandfonline.com/doi/abs/10.1080/17455030.2019.1623433
38.
Achenbach
,
J. D.
,
1976
,
Wave Propagation in Elastic Solids
,
North-Holland
,
New York
.
39.
Li
,
Y.
,
Li
,
L.
,
Wei
,
P.
, and
Wang
,
C.
,
2018
, “
Reflection and Refraction of Thermoelastic Waves at an Interface of Two Couple-Stress Solids Based on Lord-Shulman Thermoelastic Theory
,”
Appl. Math. Model.
,
55
, pp.
536
550
.10.1016/j.apm.2017.10.040
40.
Biot
,
M.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
53
.10.1063/1.1722351
You do not currently have access to this content.