Abstract

In this study, a numerical model of a reciprocating magnetocaloric regenerator using a Halbach magnet array is developed in ansys-fluent software. The model consists of three components, namely, (i) the Halbach magnet array, (ii) the magnetocaloric material (MCM), and (iii) the heat transfer fluid. A two-dimensional (2D) domain is studied due to the axisymmetric geometry of the physical model. A pressure difference is defined between the inlet and outlet sections of the fluid domain to maintain a reciprocating fluid flow. In the proposed computational scheme, a segregated approach is followed to consider the spatial distribution of the magnetic field in the thermal analyses. Therefore, a 2D magnetic field within the MCM is computed using an analytical approach at first, and its results are integrated into ansys-fluent with a user-defined function (UDF). Hydrodynamic and heat transfer characteristics of the proposed regenerator model are evaluated under various Reynolds numbers and cycle durations. Moreover, the temperature drop at the cold side of the regenerator is represented in terms of the pressure difference, flow duration, and the diameter of Gadolinium (Gd) as the MCM. For the current geometrical configurations, it is observed that the magnetic field varies from 0.4 T to 1 T within Gd. The highest temperature spans are measured as 8.4 K, 7.5 K, and 7.2 K numerically for the cycle durations of 1.2 s, 2.2 s, and 4.2 s, respectively.

References

1.
Kamran
,
M. S.
,
Sun
,
J.
,
Tang
,
Y. B.
,
Chen
,
Y. G.
,
Wu
,
J. H.
, and
Wang
,
H. S.
,
2016
, “
Numerical Investigation of Room Temperature Magnetic Refrigerator Using Microchannel Regenerators
,”
Appl. Therm. Eng.
,
102
, pp.
1126
1140
.10.1016/j.applthermaleng.2016.02.085
2.
Aprea
,
C.
,
Cardillo
,
G.
,
Greco
,
A.
,
Maiorino
,
A.
, and
Masselli
,
C.
,
2016
, “
A Rotary Permanent Magnet Magnetic Refrigerator Based on AMR Cycle
,”
Appl. Therm. Eng.
,
101
, pp.
699
703
.10.1016/j.applthermaleng.2016.01.097
3.
Aprea
,
C.
,
Cardillo
,
G.
,
Greco
,
A.
,
Maiorino
,
A.
, and
Masselli
,
C.
,
2015
, “
A Comparison Between Experimental and 2D Numerical Results of a Packed-Bed Active Magnetic Regenerator
,”
Appl. Therm. Eng.
,
90
, pp.
376
383
.10.1016/j.applthermaleng.2015.07.020
4.
Lionte
,
S.
,
Vasile
,
C.
, and
Siroux
,
M.
,
2015
, “
Numerical Analysis of a Reciprocating Active Magnetic Regenerator
,”
Appl. Therm. Eng.
,
75
, pp.
871
879
.10.1016/j.applthermaleng.2014.10.076
5.
Yanik
,
E.
, and
Celik
,
S.
,
2018
, “
Analysis of Magnetic Refrigeration Designs With Three Different Magnet Array Geometries
,”
ASHRAE Trans.
,
124
(
1
), pp.
12
21
.
6.
Celik
,
S.
, and
Ekren
,
O.
,
2017
, “
Thermal and Exergetic Analysis of a Rotary-Type Magnetic Cooling System
,”
Int. J. Exergy
,
23
(
3
), pp.
210
255
.10.1504/IJEX.2017.085769
7.
Lozano
,
J. A.
,
Engelbrecht
,
K.
,
Bahl
,
C. R. H.
,
Nielsen
,
K. K.
,
Eriksen
,
D.
,
Olsen
,
U. L.
,
Barbosa
,
J. R.
,
Smith
,
A.
,
Prata
,
A. T.
, and
Pryds
,
N.
,
2013
, “
Performance Analysis of a Rotary Active Magnetic Refrigerator
,”
Appl. Energy
,
111
, pp.
669
680
.10.1016/j.apenergy.2013.05.039
8.
Lozano
,
J. A.
,
Engelbrecht
,
K.
,
Bahl
,
C. R. H.
,
Nielsen
,
K. K.
,
Barbosa
,
J. R.
,
Prata
,
A. T.
, and
Pryds
,
N.
,
2014
, “
Experimental and Numerical Results of a High Frequency Rotating Active Magnetic Refrigerator
,”
Int. J. Refrig.
,
37
, pp.
92
98
.10.1016/j.ijrefrig.2013.09.002
9.
Aprea
,
C.
,
Greco
,
A.
,
Maiorino
,
A.
, and
Masselli
,
C.
,
2016
, “
The Energy Performances of a Rotary Permanent Magnet Magnetic Refrigerator
,”
Int. J. Refrig.
,
61
, pp.
1
11
.10.1016/j.ijrefrig.2015.09.005
10.
Aprea
,
C.
,
Greco
,
A.
, and
Maiorino
,
A.
,
2017
, “
An Application of the Artificial Neural Network to Optimise the Energy Performances of a Magnetic Refrigerator
,”
Int. J. Refrig.
,
82
, pp.
238
251
.10.1016/j.ijrefrig.2017.06.015
11.
Eriksen
,
D.
,
Engelbrecht
,
K.
,
Bahl
,
C.
,
Bjørk
,
R.
,
Nielsen
,
K.
,
Insinga
,
A.
, and
Pryds
,
N.
,
2015
, “
Design and Experimental Tests of a Rotary Active Magnetic Regenerator Prototype
,”
Int. J. Refrig.
,
58
, pp.
14
21
.10.1016/j.ijrefrig.2015.05.004
12.
Velázquez
,
D.
,
Estepa
,
C.
,
Palacios
,
E.
, and
Burriel
,
R.
,
2016
, “
A Comprehensive Study of a Versatile Magnetic Refrigeration Demonstrator
,”
Int. J. Refrig.
,
63
, pp.
14
24
.10.1016/j.ijrefrig.2015.10.006
13.
Eriksen
,
D.
,
Engelbrecht
,
K.
,
Bahl
,
C. R. H.
,
Bjork
,
R.
, and
Nielsen
,
K. K.
,
2016
, “
Effects of Flow Balancing on Active Magnetic Regenerator Performance
,”
Appl. Therm. Eng.
,
103
, pp.
1
8
.10.1016/j.applthermaleng.2016.03.001
14.
Niknia
,
I.
,
Campbell
,
O.
,
Christiaanse
,
T. V.
,
Govindappa
,
P.
,
Teyber
,
R.
,
Trevizoli
,
P. V.
, and
Rowe
,
A.
,
2016
, “
Impacts of Configuration Losses on Active Magnetic Regenerator Device Performance
,”
Appl. Therm. Eng.
,
106
, pp.
601
612
.10.1016/j.applthermaleng.2016.06.039
15.
Lei
,
T.
,
Engelbrecht
,
K.
,
Nielsen
,
K. K.
, and
Veje
,
C. T.
,
2017
, “
Study of Geometries of Active Magnetic Regenerators for Room Temperature Magnetocaloric Refrigeration
,”
Appl. Therm. Eng.
,
111
, pp.
1232
1243
.10.1016/j.applthermaleng.2015.11.113
16.
Teyber
,
R.
,
Trevizoli
,
P. V.
,
Christiaanse
,
T. V.
,
Govindappa
,
P.
,
Niknia
,
I.
, and
Rowe
,
A.
,
2018
, “
Semi-Analytic AMR Element Model
,”
Appl. Therm. Eng.
,
128
, pp.
1022
1029
.10.1016/j.applthermaleng.2017.09.082
17.
Petersen
,
T. F.
,
Pryds
,
N.
,
Smith
,
A.
,
Hattel
,
J.
,
Schmidt
,
H.
, and
Knudsen
,
H. J. H.
,
2008
, “
Two-Dimensional Mathematical Model of a Reciprocating Room-Temperature Active Magnetic Regenerator
,”
Int. J. Refrig.
,
31
(
3
), pp.
432
443
.10.1016/j.ijrefrig.2007.07.009
18.
Utaka
,
Y.
,
Hu
,
K.
,
Chen
,
Z.
, and
Zhao
,
Y.
,
2019
, “
Application of Simple and Effective Thermal Switch for Solid-State Magnetic Refrigeration at Room Temperature
,”
Appl. Therm. Eng.
,
155
, pp.
196
205
.10.1016/j.applthermaleng.2019.03.127
19.
Aprea
,
C.
,
Greco
,
A.
,
Maiorino
,
A.
, and
Masselli
,
C.
,
2020
, “
The Employment of Caloric-Effect Materials for Solid-State Heat Pumping
,”
Int. J. Refrig.
,
109
, pp.
1
11
.10.1016/j.ijrefrig.2019.09.011
20.
Petersen
,
T. F.
,
2007
, “
Numerical Modelling and Analysis of a Room Temperature Magnetic Refrigeration System
,”
Ph.D. dissertation
, Technical University of Denmark, Roskilde, Denmark.https://backend.orbit.dtu.dk/ws/portalfiles/portal/4959349/TFPE_PhD_report_final.pdf
21.
Akıncı
,
Ü.
,
Yüksel
,
Y.
, and
Vatansever
,
E.
,
2018
, “
Magnetocaloric Properties of the spin-S (S≥ 1) Ising Model on a Honeycomb Lattice
,”
Phys. Lett. A
,
382
(
45
), pp.
3238
3243
.10.1016/j.physleta.2018.09.022
22.
Yüksel
,
Y.
, and
Akıncı
,
Ü.
,
2018
, “
A Comparative Study of Critical Phenomena and Magnetocaloric Properties of Ferromagnetic Ternary Alloys
,”
J. Phys. Chem. Solids
,
112
, pp.
143
152
.10.1016/j.jpcs.2017.09.015
23.
Tishin
,
A. M.
,
1990
, “
Magnetocaloric Effect in Strong Magnetic Fields
,”
Cryogenics
,
30
(
2
), pp.
127
136
.10.1016/0011-2275(90)90258-E
24.
Fluent
,
2009
, “
Documentation
,” ANSYS, 12.0/12.1, ANSYS Inc., Canonsburg, PA.
25.
De Oliveira
,
N. A.
, and
Von Ranke
,
P. J.
,
2010
, “
Theoretical Aspects of the Magnetocaloric Effect
,”
Phys. Rep.
,
489
(
4–5
), pp.
89
159
.10.1016/j.physrep.2009.12.006
26.
Ezan
,
M. A.
,
Ekren
,
O.
,
Metin
,
C.
,
Yılancı
,
A.
,
Biyik
,
E.
, and
Kara
,
S. M.
,
2017
, “
Numerical Analysis of a Near-Room-Temperature Magnetic Cooling System
,”
Int. J. Refrig.
,
75
, pp.
262
275
.10.1016/j.ijrefrig.2016.12.018
27.
Munson
,
B.
,
R.
,
Okiishi
,
Theodore
,
H.
,
Huebsch
,
Wade
,
W.
,
Rothmayer
., and
Alric
,
P.
,
2013
,
Fluid Mechanics
,
Wiley
,
Singapore
.
28.
Bahl
,
C. R. H.
,
Petersen
,
T. F.
,
Pryds
,
N.
, and
Smith
,
A.
,
2008
, “
A Versatile Magnetic Refrigeration Test Device
,”
Rev. Sci. Instrum.
,
79
(
9
), p.
093906
.10.1063/1.2981692
29.
Roudaut
,
J.
,
Kedous-Lebouc
,
A.
,
Yonnet
,
J. P.
, and
Muller
,
C.
,
2011
, “
Numerical Analysis of an Active Magnetic Regenerator
,”
Int. J. Refrig.
,
34
(
8
), pp.
1797
1804
.10.1016/j.ijrefrig.2011.07.012
You do not currently have access to this content.