Abstract

Applications of impinging jets are wide-ranging from cooling to heating in industrial as well as domestic field. Most of the reported heat transfer distribution data to and from impinging jets have been found from steady-state measurements. This study utilizes the solution to three-dimensional (3D) inverse heat conduction problem to estimate transient temperatures on the impingement side. Then, the temperature gradient is determined near the impingement wall (∼0.01 mm inside) with which transient heat flux is estimated on the impingement side. Instead of steady-state values, transient heat flux and corresponding wall temperatures are utilized in a thin foil technique to find out heat transfer coefficient and reference temperature simultaneously. The scope of the present technique is examined through its application to impinging jets with various configurations such as laminar jet, turbulent jet, hot jet, cold jet, and multiple jets. In all cases, estimations are reasonably close. The application of this inverse technique can be extended to any configuration of jet impingement irrespective of geometry of nozzle (circular/rectangular), the orientation of nozzle (orthogonal/inclined), the temperature of a jet (hot/cold), Reynolds numbers (laminar/turbulent), the nozzle-to-plate spacing (any Z/d), and roughness of the plate surface. The effect of plate thickness on the accuracy of the present technique is also studied. Up to 5 mm thick plates can be used in impinging jet applications without worrying much on accuracy. The use of the present technique significantly reduces the experimental cost and time since it works on transient data of just a few seconds.

References

1.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
2.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
3.
D'Aleo
,
F. P.
, and
Prasser
,
H.-M.
,
2013
, “
Transient Heat Flux Deduction for a Slab of Finite Thickness Using Surface Temperature Measurements
,”
Int. J. Heat Mass Transfer
,
60
, pp.
616
623
.10.1016/j.ijheatmasstransfer.2013.01.049
4.
Ryfa
,
A.
, and
Bialecki
,
R.
,
2011
, “
Retrieving the Heat Transfer Coefficient for Jet Impingement From Transient Temperature Measurements
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1024
1035
.10.1016/j.ijheatfluidflow.2011.06.005
5.
Wikström
,
P.
,
Blasiak
,
W.
, and
Berntsson
,
F.
,
2007
, “
Estimation of the Transient Surface Temperature and Heat Flux of a Steel Slab Using an Inverse Method
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2463
2472
.10.1016/j.applthermaleng.2007.02.005
6.
Guo
,
Q.
,
Wen
,
Z.
, and
Dou
,
R.
,
2017
, “
Experimental and Numerical Study on the Transient Heat-Transfer Characteristics of Circular Air Jet Impingement on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1177
–11
88
.10.1016/j.ijheatmasstransfer.2016.09.048
7.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
8.
O'Donovan
,
T.
,
2005
, “
Fluid Flow and Heat Transfer of an Impinging Air Jet
,”
Ph.D. dissertation
, Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland.http://home.eps.hw.ac.uk/~tso1/Thesis.pdf
9.
Ryfa
,
A.
, and
Białecki
,
R.
,
2012
, “
Heat Transfer Coefficient Retrieval in the Impingement Jet Heat Transfer
,”
European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS 2012
), Warsaw, Poland, May 9–12.https://www.researchgate.net/publication/268362689_Heat_transfer_coefficient_retrieval_in_the_impingement_jet_heat_transfer
10.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2016
, “
Isothermal Air-Jet and Premixed Flame Jet Impingement: Heat Transfer Characterization and Comparison
,”
Int. J. Therm. Sci.
,
100
, pp.
401
415
.10.1016/j.ijthermalsci.2015.10.018
11.
Fénot
,
M.
,
Vullierme
,
J.-J.
, and
Dorignac
,
E.
,
2005
, “
A Heat Transfer Measurement of Jet Impingement With High Injection Temperature
,”
C. R. Méc.
,
333
(
10
), pp.
778
–7
82
.10.1016/j.crme.2005.08.002
12.
Haghighi
,
M. R. G.
,
Eghtesad
,
M.
,
Malekzadeh
,
P.
, and
Necsulescu
,
D. S.
,
2009
, “
Three-Dimensional Inverse Transient Heat Transfer Analysis of Thick Functionally Graded Plates
,”
Energy Convers. Manag.
,
50
(
3
), pp.
450
457
.10.1016/j.enconman.2008.11.006
13.
Ryfa
,
A.
, and
Bialecki
,
R.
,
2011
, “
The Heat Transfer Coefficient Spatial Distribution Reconstruction by an Inverse Technique
,”
Inverse Probl. Sci. Eng.
,
19
(
1
), pp.
117
126
.10.1080/17415977.2010.519028
14.
Cui
,
M.
,
Yang
,
K.
,
Liu
,
Y.-F.
, and
Gao
,
X.-W.
,
2012
, “
Inverse Estimation of Transient Heat Flux to Slab Surface
,”
J. Iron Steel Res. Int.
,
19
(
11
), pp.
13
18
.10.1016/S1006-706X(13)60014-X
15.
Dou
,
R.
,
Wen
,
Z.
, and
Zhou
,
G.
,
2016
, “
2D Axisymmetric Transient Inverse Heat Conduction Analysis of Air Jet Impinging on a Stainless Steel Plate With Finite Thickness
,”
Appl. Therm. Eng.
,
93
, pp.
468
475
.10.1016/j.applthermaleng.2015.10.021
16.
Lu
,
S.
,
Heng
,
Y.
, and
Mhamdi
,
A.
,
2012
, “
A Robust and Fast Algorithm for Three-Dimensional Transient Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7865
7872
.10.1016/j.ijheatmasstransfer.2012.08.018
17.
Hao
,
D.
,
Nho
,
X.
,
Thanh
,
P.
, and
Lesnic
,
D.
,
2013
, “
Determination of the Heat Transfer Coefficients in Transient Heat Conduction
,”
Inverse Probl.
,
29
(
9
), p.
095020
.10.1088/0266-5611/29/9/095020
18.
Duda
,
P.
,
2015
, “
Solution of an Inverse Axisymmetric Heat Conduction Problem in Complicated Geometry
,”
Int. J. Heat Mass Transfer
,
82
, pp.
419
428
.10.1016/j.ijheatmasstransfer.2014.11.002
19.
Jaremkiewicz
,
M.
,
2018
, “
Identification of Three-Dimensional Transient Temperature Fields in Thick-Walled Elements Using the Inverse Method
,”
Int. J. Numer. Method Heat Fluid Flow
,
28
(
1
), pp.
138
150
.10.1108/HFF-09-2017-0369
20.
Feng
,
Z. C.
,
Chen
,
J. K.
,
Zhang
,
Y.
, and
Griggs
,
J. L.
,
2011
, “
Estimation of Front Surface Temperature and Heat Flux of a Locally Heated Plate From Distributed Sensor Data on the Back Surface
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3431
3439
.10.1016/j.ijheatmasstransfer.2011.03.043
21.
Remie
,
M. J.
,
Särner
,
G.
,
Cremers
,
M. F. G.
,
Omrane
,
A.
,
Schreel
,
K. R. A. M.
,
Aldén
,
L. E. M.
, and
de Goey
,
L. P. H.
,
2008
, “
Heat-Transfer Distribution for an Impinging Laminar Flame Jet to a Flat Plate
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3144
3152
.10.1016/j.ijheatmasstransfer.2007.08.036
22.
Katti
,
V. V.
,
Yasaswy
,
N. S.
, and
Prabhu
,
S. V.
,
2011
, “
Local Heat Transfer Distribution Between Smooth flat Surface and Impinging Air Jet From a Circular Nozzle at Low Reynolds Numbers
,”
Heat Mass Transfer
,
47
(
3
), pp.
237
244
.10.1007/s00231-010-0716-1
23.
Caliskan
,
S.
,
Baskaya
,
S.
, and
Calisir
,
T.
,
2014
, “
Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
75
, pp.
685
703
.10.1016/j.ijheatmasstransfer.2014.04.005
You do not currently have access to this content.