Abstract

The role of contact-line evaporation on spray impingement heat transfer is systematically studied by spraying de-ionized water on silicon substrates with micropillar arrays. The height, the pillar diameter, and the spacing of the micropillar array were varied from 5 to 50 μm while keeping the porosity constant at 0.75. An air-assisted nozzle was used to create a liquid spray with a Sauter mean diameter (SMD) of ∼22 to 42 μm depending on flow conditions. Most test runs were conducted at a water flow rate of 30 ml/min and an air-liquid mass flow rate ratio of ∼0.57. The results show a continuous increase in the critical heat flux (CHF) as the pillar diameter is decreased. The effects of pillar height are nonmonotonic, with CHF and peak heat transfer coefficient attaining a maximum as the height-to-diameter ratio approaches unity. Values of CHF as high as 830 W/cm2 were achieved, along with cooling efficiencies of 49%. The effect of liquid flow rates and air-flow rates were also investigated independently using textured surfaces.

References

1.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
,
2006
, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.10.1109/JPROC.2006.879791
2.
Datrice
,
N.
,
Ramirez-San-Juan
,
J.
,
Zhang
,
R.
,
Meshkinpour
,
A.
,
Aguilar
,
G.
,
Nelson
,
J. S.
, and
Kelly
,
K. M.
,
2006
, “
Cutaneous Effects of Cryogen Spray Cooling on In Vivo Human Skin
,”
Dermatol. Surg
,
32
(
8
), pp.
1007
1012
.
3.
Hall
,
D. D.
, and
Mudawar
,
I.
,
1995
, “
Experimental and Numerical Study of Quenching Complex-Shaped Metallic Alloys With Multiple, Overlapping Sprays
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1201
1216
.10.1016/0017-9310(94)00244-P
4.
Tsukamoto
,
N.
,
2019
, “
Study on Modeling of Spray Cooling for Spent Fuel Pool Accidents
,”
J. Nucl. Sci. Technol.
,
56
(
11
), pp.
945
952
.10.1080/00223131.2019.1626778
5.
Turek
,
L. J.
,
Rini
,
D. P.
, and
Saarloos
,
B. A.
,
2008
, “
Evaporative Spray Cooling of Power Electronics Using High Temperature Coolant
,”
Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
), Orlando, FL, May 28–31, pp.
346
351
.10.1109/ITHERM.2008.4544290
6.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
7.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2018
, “
From Drop Impact Physics to Spray Cooling Models: A Critical Review
,”
Exp. Fluids
,
59
(
3
), p.
55
10.1007/s00348-018-2514-3
8.
Khavari
,
M.
,
Sun
,
C.
,
Lohse
,
D.
, and
Tran
,
T.
,
2015
, “
Fingering Patterns During Droplet Impact on Heated Surfaces
,”
Soft Matter
,
11
(
17
), pp.
3298
3303
.10.1039/C4SM02878C
9.
Negeed
,
E.-S. R.
,
Ishihara
,
N.
,
Tagashira
,
K.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2010
, “
Experimental Study on the Effect of Surface Conditions on Evaporation of Sprayed Liquid Droplet
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2250
2271
.10.1016/j.ijthermalsci.2010.08.008
10.
Negeed
,
E.-S. R.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
High Speed Camera Investigation of the Impingement of Single Water Droplets on Oxidized High Temperature Surfaces
,”
Int. J. Therm. Sci.
,
63
, pp.
1
14
.10.1016/j.ijthermalsci.2012.07.014
11.
Staat
,
H. J. J.
,
Tran
,
T.
,
Geerdink
,
B.
,
Riboux
,
G.
,
Sun
,
C.
,
Gordillo
,
J. M.
, and
Lohse
,
D.
,
2015
, “
Phase Diagram for Droplet Impact on Superheated Surfaces
,”
J. Fluid Mech.
,
779
, p. R3.10.1017/jfm.2015.465
12.
Tran
,
T.
,
Staat
,
H. J. J.
,
Prosperetti
,
A.
,
Sun
,
C.
, and
Lohse
,
D.
,
2012
, “
Drop Impact on Superheated Surfaces
,”
Phys. Rev. Lett.
,
108
(
3
), p.
036101
.10.1103/PhysRevLett.108.036101
13.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Panão
,
M. R.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.10.1016/j.pecs.2010.01.002
14.
Grissom
,
W. M.
, and
Wierum
,
F. A.
,
1981
, “
Liquid Spray Cooling of a Heated Surface
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
261
271
.10.1016/0017-9310(81)90034-X
15.
Pais
,
M. R.
,
Chow
,
L. C.
, and
Mahefkey
,
E. T.
,
1992
, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
211
219
.10.1115/1.2911248
16.
Rini
,
D. P.
,
Chen
,
R.
, and
Chow
,
L. C.
,
2002
, “
Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
63
72
.10.1115/1.1418365
17.
Mesler
,
R.
,
1993
, “
Discussion: ‘Surface Roughness and Its Effects on the Heat Transfer Mechanism of Spray Cooling’(Pais, MR, Chow, LC, and Mahefkey, ET, 1992, ASME J. Heat Transfer)
,”
ASME J. Heat Transfer
,
115
(
4
), p.
1083
.10.1115/1.2911372
18.
Sehmbey
,
M. S.
,
Pais
,
M. R.
, and
Chow
,
L. C.
,
1992
, “
Effect of Surface Material Properties and Surface Characteristics Inevaporative Spray Cooling
,”
J. Thermophys. Heat Transfer
,
6
(
3
), pp.
505
512
.10.2514/3.389
19.
Hsieh
,
C.-C.
, and
Yao
,
S.-C.
,
2006
, “
Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
962
974
.10.1016/j.ijheatmasstransfer.2005.09.013
20.
Horacek
,
B.
,
Kiger
,
K. T.
, and
Kim
,
J.
,
2005
, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1425
1438
.10.1016/j.ijheatmasstransfer.2004.10.026
21.
Silk
,
E. A.
,
Kim
,
J.
, and
Kiger
,
K.
,
2006
, “
Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4910
4920
.10.1016/j.ijheatmasstransfer.2006.05.031
22.
Sodtke
,
C.
, and
Stephan
,
P.
,
2007
, “
Spray Cooling on Micro Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4089
4097
.10.1016/j.ijheatmasstransfer.2006.12.037
23.
Zhang
,
Z.
,
Jiang
,
P. X.
,
Ouyang
,
X. L.
,
Chen
,
J. N.
, and
Christopher
,
D. M.
,
2014
, “
Experimental Investigation of Spray Cooling on Smooth and Micro-Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
76
, pp.
366
375
.10.1016/j.ijheatmasstransfer.2014.04.010
24.
Zhang
,
Z.
,
Li
,
J.
, and
Jiang
,
P. X.
,
2013
, “
Experimental Investigation of Spray Cooling on Flat and Enhanced Surfaces
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
102
111
.10.1016/j.applthermaleng.2012.08.057
25.
Chen
,
J. N.
,
2018
, “
Phenomenon and Mechanism of Spray Cooling on Nanowire Arrayed and Hybrid Micro/Nanostructured Surfaces
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112401
.10.1115/1.4039903
26.
Wang
,
H.
,
Wu
,
J. J.
,
Yang
,
Q.
,
Zhu
,
X.
, and
Liao
,
Q.
,
2016
, “
Heat Transfer Enhancement of Ammonia Spray Cooling by Surface Modification
,”
Int. J. Heat Mass Transfer
,
101
, pp.
60
68
.10.1016/j.ijheatmasstransfer.2016.05.052
27.
Plawsky
,
J. L.
,
Ojha
,
M.
,
Chatterjee
,
A.
, and
Wayner
,
P. C.
,
2008
, “
Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line
,”
Chem. Eng. Commun.
,
196
(
5
), pp.
658
696
.10.1080/00986440802569679
28.
Potash
,
M.
, and
Wayner
,
P. C.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1851
1863
.10.1016/0017-9310(72)90058-0
29.
Wayner
,
P. C.
,
1999
, “
Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review
,”
AIChE J.
,
45
(
10
), pp.
2055
2068
.10.1002/aic.690451004
30.
Morris
,
S. J. S.
,
2000
, “
A Phenomenological Model for the Contact Region of an Evaporating Meniscus on a Superheated Slab
,”
J. Fluid Mech.
,
411
, pp.
59
89
.10.1017/S0022112099008046
31.
Morris
,
S. J. S.
,
2003
, “
The Evaporating Meniscus in a Channel
,”
J. Fluid Mech.
,
494
, pp.
297
317
.10.1017/S0022112003006153
32.
Dhillon
,
N. S.
,
Buongiorno
,
J.
, and
Varanasi
,
K. K.
,
2015
, “
Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces
,”
Nat. Commun.
,
6
, pp.
1
12
.
33.
Johnson
,
E.
,
Srinivasa N
,
V.
,
Strykowski
,
P. J.
, and
Hoxie
,
A.
,
2019
, “
Role of Density in Gas-Assist Counterflow Atomization
,”
ILASS-Americas 30th Annual Conference on Liquid Atomization and Spray System,
May, pp.
1
7
.
34.
HoxieJohnson
,
A.
,
Srinivasan
,
E. V.
, and
Strykowski
,
P.
,
2018
, “
Characteristics of a Novel Energy-Efficient Atomizer Employing Countercurrent Shear
,”
14th International Conference on Liquid and Atomization Spray System
, pp.
1
9
.
You do not currently have access to this content.