Abstract

Heat transfer improvement in microchannel heat sink (MCHS) has been a challenge, because it increases the power requirements for the fluid flow. In the present study, MCHS with different wall, geometric, and design configurations of cylindrical ribs and cavities are simulated to investigate their effect on thermal and hydrodynamic performance of MCHS using a laminar flow having Reynolds number in the range from 100 to 1000. The wall configurations include; base wall cylindrical ribs (BWCR), side wall cylindrical ribs (SWCR), and all wall cylindrical ribs (AWCR). Moreover, the geometric configurations involve different AWCR cases having rib spacings (Sfr) of 0.4 mm, 0.8 mm, 1.2 mm, and 0.4 mm staggered arrangement. Furthermore, the design configurations include; AWCR, all wall cylindrical cavities (AWCC), and all wall cylindrical ribs and cavities (AWCRC) with constant Sfr = 0.4 mm. The performance of various channels with flow disruptors is analyzed in terms of friction factor (f) and Nusselt number and then compared with smooth channel in terms of thermal enhancement factor (η). Based on the first law of thermodynamics, thermal resistance (Rth) is used to investigate the resistance of any configuration to flow of heat comparing at same pumping power. Moreover, the second law of thermodynamics is applied to quantify the rate of entropy generation (S˙gen) and transport efficiency (ηt) for MCHS. The results show that although the MCHS with all wall ribs has a lower value of η than the base wall and side wall ribs; however, it has the maximum value of ηt and minimum value of Rth and S˙gen; thus, indicating that η is not the only performance criteria for the selection of MCHS.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Jing
,
H.
,
Li
,
Z.
,
Yuxi
,
N.
,
Junjie
,
Z.
,
Suping
,
L.
, and
Xiaoyu
,
M.
,
2015
, “
Design and Simulation of a Novel High-Efficiency Cooling Heat-Sink Structure Using Fluid-Thermodynamics
,”
J. Semicond.
,
36
(
10
), p.
102006
.10.1088/1674-4926/36/10/102006
3.
Wang
,
H.
,
Chen
,
Z.
, and
Gao
,
J.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.
,
107
, pp.
870
879
.10.1016/j.applthermaleng.2016.07.039
4.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.10.1016/j.ijthermalsci.2017.05.013
5.
Leng
,
C.
,
Wang
,
X. D.
, and
Wang
,
T. H.
,
2015
, “
An Improved Design of Double-Layered Microchannel Heat Sink With Truncated Top Channels
,”
Appl. Therm. Eng.
,
79
, pp.
54
62
.10.1016/j.applthermaleng.2015.01.015
6.
Dewan
,
A.
, and
Srivastava
,
P.
,
2015
, “
A Review of Heat Transfer Enhancement Through Flow Disruption in a Microchannel
,”
J. Therm. Sci.
,
24
(
3
), pp.
203
214
.10.1007/s11630-015-0775-1
7.
Xie
,
G.
,
Shen
,
H.
, and
Wang
,
C. C.
,
2015
, “
Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internal Vertical Y-Shaped Bifurcations
,”
Int. J. Heat Mass Transfer
,
90
, pp.
948
958
.10.1016/j.ijheatmasstransfer.2015.07.034
8.
Zhang
,
F.
,
Sunden
,
B.
,
Zhang
,
W.
, and
Xie
,
G.
,
2015
, “
Constructal Parallel-Flow and Counter Flow Microchannel Heat Sinks With Bifurcations
,”
Numer. Heat Transfer Part A: Appl.
,
68
(
10
), pp.
1087
1105
.10.1080/10407782.2015.1023148
9.
Abdollahi
,
A.
,
Sharma
,
R. N.
,
Mohammed
,
H. A.
, and
Vatani
,
A.
,
2018
, “
Heat Transfer and Flow Analysis of Al2O3–Water Nanofluids in Interrupted Microchannel Heat Sink With Ellipse and Diamond Ribs in the Transverse Microchambers
,”
Heat Transfer Eng.
,
39
(
16
), pp.
1461
1469
.10.1080/01457632.2017.1379344
10.
Abdoli
,
A.
,
Jimenez
,
G.
, and
Dulikravich
,
G. S.
,
2015
, “
Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes With a Hot Spot
,”
Int. J. Therm. Sci.
,
90
, pp.
290
297
.10.1016/j.ijthermalsci.2014.12.021
11.
Chuan
,
L.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
52
57
.10.1016/j.icheatmasstransfer.2015.04.005
12.
Wang
,
G.
,
Niu
,
D.
,
Xie
,
F.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Ding
,
G.
,
2015
, “
Experimental and Numerical Investigation of a Microchannel Heat Sink (MCHS) With Micro-Scale Ribs and Grooves for Chip Cooling
,”
Appl. Therm. Eng.
,
85
, pp.
61
70
.10.1016/j.applthermaleng.2015.04.009
13.
Khan
,
A. A.
,
Kim
,
S. M.
, and
Kim
,
K. Y.
,
2016
, “
Performance Analysis of a Microchannel Heat Sink With Various Rib Configurations
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
782
790
.10.2514/1.T4663
14.
Xia
,
G.
,
Chai
,
L.
,
Wang
,
H.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2011
, “
Optimum Thermal Design of Microchannel Heat Sink With Triangular Reentrant Cavities
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1208
1219
.10.1016/j.applthermaleng.2010.12.022
15.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
1969
1981
.10.1016/j.ijheatmasstransfer.2017.01.046
16.
Li
,
Y.
,
Xia
,
G. D.
,
Ma
,
D.
,
Jia
,
Y.
, and
Wang
,
J.
,
2016
, “
Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Triangular Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
98
, pp.
17
28
.10.1016/j.ijheatmasstransfer.2016.03.022
17.
Zhai
,
Y.
,
Xia
,
G. D.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Exergy Analysis and Performance Evaluation of Flow and Heat Transfer in Different Micro Heat Sinks With Complex Structure
,”
Int. J. Heat Mass Transfer
,
84
, pp.
293
303
.10.1016/j.ijheatmasstransfer.2015.01.039
18.
Zhai
,
Y.
,
Xia
,
G. D.
,
Liu
,
X.
, and
Li
,
Y.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. Journal Heat Mass Transfer
,
68
, pp.
224
233
.10.1016/j.ijheatmasstransfer.2013.08.086
19.
Li
,
P.
,
Luo
,
Y.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2018
, “
Flow and Heat Transfer Characteristics and Optimization Study on the Water-Cooled Microchannel Heat Sinks With Dimple and Pin-Fin
,”
Int. J. Heat Mass Transfer
,
119
, pp.
152
162
.10.1016/j.ijheatmasstransfer.2017.11.112
20.
Li
,
Y.
,
Xia
,
G. D.
,
Jia
,
Y.
,
Ma
,
D.
,
Cai
,
B.
, and
Wang
,
J.
,
2017
, “
Effect of Geometric Configuration on the Laminar Flow and Heat Transfer in Microchannel Heat Sinks With Cavities and Fins
,”
Numer. Heat Transfer, Part A: Appl.
,
71
(
5
), pp.
528
546
.10.1080/10407782.2016.1277940
21.
Saha
,
S. K.
,
Ranjan
,
H.
,
Emani
,
M. S.
, and
Bharti
,
A. K.
,
2020
,
Performance Evaluation Criteria in Heat Transfer Enhancement
,
Springer Briefs in Applied Sciences and Technology
, Springer Nature, Cham, Switzerland AG. 
22.
Lorenzini
,
M.
, and
Suzzi
,
N.
,
2016
, “
The Influence of Geometry on the Thermal Performance of Microchannels in Laminar Flow With Viscous Dissipation
,”
Heat Transfer Eng.
,
37
(
13–14
), pp.
1096
1104
.10.1080/01457632.2015.1111100
23.
Webb
,
R. L.
,
1981
, “
Performance Evolution Criteria for Use of Enhanced Heat Exchanger Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
24.
Rehman
,
M.
,
Cheema
,
T.
,
Ahmad
,
F.
,
Khan
,
M.
, and
Abbas
,
A.
,
2020
, “
Thermodynamic Assessment of Microchannel Heat Sinks With Novel Sidewall Ribs
,”
J. Thermo-Phys. Heat Transfer
,
34
(
2
), pp.
243
254
.10.2514/1.T5770
25.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
26.
Zimparov
,
V.
,
2000
, “
Extended Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces: Heat Transfer Through Ducts With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3137
3155
.10.1016/S0017-9310(99)00317-8
27.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
, Boca Raton,
FL
28.
Liu
,
W.
,
Jia
,
H.
,
Liu
,
Z. C.
,
Fang
,
H. S.
, and
Yang
,
K.
,
2013
, “
The Approach of Minimum Heat Consumption and Its Applications in Convective Heat Transfer Optimization
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
389
396
.10.1016/j.ijheatmasstransfer.2012.10.046
29.
Ahmad
,
F.
,
Cheema
,
T. A.
,
Rehman
,
M. M. U.
,
Abbas
,
A.
, and
Park
,
C. W.
,
2019
, “
Thermal Enhancement of Microchannel Heat Sink Using Rib Surface Refinements
,”
Numer. Heat Transfer Part A: Appl.
,
76
(
11
), pp.
851
870
.10.1080/10407782.2019.1673104
30.
Xie
,
G.
,
Li
,
Y.
,
Zhang
,
F.
, and
Sunden
,
B.
,
2016
, “
Analysis of Micro-Channel Heat Sinks With Rectangular-Shaped Flow Obstructions
,”
Numer. Heat Transfer Part A: Appl.
,
69
(
4
), pp.
335
351
.10.1080/10407782.2015.1080580
31.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
32.
Karwa
,
R.
,
Sharma
,
C.
, and
Karwa
,
N.
,
2013
, “
Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces
,”
ASME J. Sol. Energy
,
2013
, pp.
1
19
.10.1155/2013/370823
You do not currently have access to this content.