Abstract

For increased specific thrust and efficiency, more effective film-cooling schemes are developed with each successive gas turbine design. Adding secondary film-cooling holes to each primary film-cooling hole represents such improvement without significantly increasing cost. Presented is an experimental investigation on the effects of secondary-to-primary hole diameter ratio on film-cooling performance and flow structure in the coolant-to-passage flow merge zone. Film-cooling effectiveness values and heat transfer coefficients are measured in the vicinity of the hole by the thermochromic liquid crystal (TLC) technique. Measured in-flow temperature fields in the coolant emerging zone identify flow makeup, whether coolant or passage. Furthermore, complementary flow and thermal fields are numerically documented. The Reynolds number based on mainstream velocity and primary hole diameter is 20,300, a representative value. Performance features are compared at three blowing ratios (0.5, 1.0, and 1.5) and two mass flow ratios (3.43% and 5.15%). Secondary holes improve film-cooling effectiveness, especially when blowing rate is high. Secondary holes create an “antikidney vortex structure” that weakens the main kidney vortex pair which helps keep coolant attached to the surface, allowing more effective laterally spreading. However, adding secondary holes increases heat transfer coefficients, especially at high blowing rates. The secondary-to-primary hole diameter ratio is an important parameter. Larger secondary holes can counteract the detrimental effects of having higher blowing ratios, but with increased blowing ratios this improvement subsides. An optimum diameter ratio is sought.

Reference

1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
T. F.
Irvine
, Jr.
, and
J. P.
Hartnett
, eds.
Academic
,
New York
, pp.
321
379
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
An
,
B.
,
Liu
,
J.
, and
Zhou
,
S.
,
2019
, “
Effects of Mainstream Turbulence Intensity and Coolant-to-Mainstream Density Ratio on Film Cooling Effectiveness of Multirow Diffusion Slot Holes
,”
ASME J. Heat Transfer
,
141
(
2
), p.
122001
.10.1115/1.4044806
4.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.10.1115/1.3450752
5.
Johnson
,
B.
,
Wei
,
T.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.10.1016/j.ijheatmasstransfer.2014.04.028
6.
Wang
,
J.
,
Gu
,
C. W.
, and
Sunden
,
B. A.
,
2015
, “
Conjugated Heat Transfer Analysis of a Film Cooling Passage With Different Rib Configurations
,”
Int. J. Numer. Method Heat Fluid Flow
,
25
(
4
), pp.
841
860
.10.1108/HFF-04-2014-0110
7.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurements in a Turbulated Passage With Internal Cross Flow
,”
ASME Paper No. 2001-GT-0135
. 10.1115/2001-GT-0135
8.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
2
), p.
121006
.10.1115/1.4032928
9.
Li
,
X.
, and
Wang
,
T.
,
2008
, “
Computational Analysis of Surface Curvature Effect on Mist Film-Cooling Performance
,”
ASME J. Heat Transfer
,
130
(
2
), p.
121901
.10.1115/1.2970071
10.
Gao
,
W. J.
,
Yue
,
Z. F.
,
Li
,
L.
,
Zhao
,
Z. N.
, and
Tong
,
F. J.
,
2017
, “
Numerical Simulation on Film Cooling With Compound Angle of Blade Leading Edge Model for Gas Turbine
,”
Int. J. Heat Mass Transfer
,
115
, pp.
839
855
.10.1016/j.ijheatmasstransfer.2017.07.105
11.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2006
, “
Film Cooling Effectiveness on the Leading Edge Region of a Rotating Turbine Blade With Two Rows of Film Cooling Holes Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
879
888
.10.1115/1.2241945
12.
Sundaram
,
N.
, and
Thole
,
S.
,
2008
, “
Film-Cooling Flow Fields With Trenched Holes on an Endwall
,”
ASME J. Turbomach.
,
131
(
4
), p.
041007
.10.1115/1.306831
13.
Chen
,
S. P.
,
Chyu
,
M. K.
, and
Shih
,
I. P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci
,.,
50
(
6
), pp.
1085
1094
.10.1016/j.ijthermalsci.2010.10.005
14.
Na
,
S.
, and
Shih
,
T.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.10.1115/1.2709965
15.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Large Eddy Simulation of Compound Angle Hole Film Cooling With Hole Length-to-Diameter Ratio and Internal Crossflow Orientation Effects
,”
Int. J. Therm. Sci.
,
121
, pp.
410
423
.10.1016/j.ijthermalsci.2017.08.001
16.
Park
,
S.
,
Jung
,
E. Y.
,
Kim
,
S. H.
,
Sohn
,
H. S.
, and
Cho
,
H. H.
,
2016
, “
Enhancement of Film Cooling Effectiveness Using Backward Injection Holes
,”
Int. J. Therm. Sci.
,
110
, pp.
314
324
.10.1016/j.ijthermalsci.2016.08.001
17.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.10.1115/1.4029817
18.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
19.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2012
, “
Performance Evaluation of a Novel Film-Cooling Hole
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101702
.10.1115/1.4006752
20.
Foster
,
N. W.
, and
Lampard
,
D.
,
1980
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Gas Turbulence Power
,
102
(
3
), pp.
584
588
.10.1115/1.3230306
21.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(
1
), pp.
331
339
.10.1115/1.3262013
22.
Harrington
,
M.
,
McWaters
,
M.
,
Bogard
,
D. G.
,
Lemmon
,
C.
, and
Thole
,
K.
,
2001
, “
Full Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.10.1115/1.1400111
23.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
24.
Jovanović
,
M. B.
,
Lange
,
H. C. D.
, and
Steenhoven
,
A. A. V.
,
2006
, “
Influence of Hole Imperfection on Jet Cross Flow Interaction
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
42
53
.10.1016/j.ijheatfluidflow.2005.06.003
25.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
, “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.10.1017/S0022112003007407
26.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
27.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2005
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
, pp.
677
687
.10.1115/1.2098768
28.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II: Compound Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.10.1115/1.555434
29.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.10.1115/1.2720508
30.
Choi
,
D. W.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
246
254
.10.2514/1.T4060
31.
Yao
,
J. X.
,
Xu
,
J.
,
Zhang
,
K.
,
Jiang
,
K.
, and
Wright
,
L.
,
2018
, “
Interaction of Flow and Film-Cooling Effectiveness Between Double-Jet Film-Cooling Holes With Various Spanwise Distances
,”
ASME J. Turbomach.
,
140
(
2
), p.
121011
.10.1115/1.4041809
32.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.10.1016/j.ijheatmasstransfer.2012.03.064
33.
Kusterer
,
K.
,
Tekin
,
N.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2012
, “
Experimental and Numerical Investigations of the NEKOMIMI Film Cooling Technology
,”
ASME
Paper No. GT2012-68400
. 10.1115/GT2012-68400
34.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Anti Vortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.10.1115/1.2777194
35.
Dhungel
,
A.
,
Lu
,
Y. P.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J. D.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.10.1115/1.2950059
36.
LeBlanc
,
C.
,
Narzary
,
D. P.
, and
Ekkad
,
S.
, “
Film-Cooling Performance of Antivortex Hole on a Flat Plate
,”
ASME J. Turbomach.
,
135
(
6
), p.
061009
.10.1115/1.4023436
37.
Yao
,
Y.
,
Zhang
,
J.
, and
Yang
,
Y.
,
2013
, “
Numerical Study on Film Cooling Mechanism and Characteristics of Cylindrical Holes With Branched Jet Injections
,”
Propul. Power Res.
,
2
(
1
), pp.
30
37
.10.1016/j.jppr.2012.12.001
38.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061701
.10.1115/1.4032883
39.
Ramesh
,
S.
,
Leblanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Alvin
,
M. A.
,
2016
, “
Film Cooling Performance of Tripod Antivortex Injection Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021006
.10.1115/1.4035290
40.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1181
.10.1007/s00231-009-0523-8
41.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer, Part A
,
55
(
7
), pp.
634
653
.10.1080/10407780902821532
42.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2015
, “
Numerical Assessment of the Film Cooling Through Novel Sister-Shaped Single-Hole Schemes
,”
Numer. Heat Transfer, Part A
,
67
(
4
), pp.
414
435
.10.1080/10407782.2014.937257
43.
Abd Alsalam
,
S.
, and
Jubran
,
B. A.
,
2019
, “
Film Cooling of Compound Angle Upstream Sister Holes
,”
ASME Paper No. GT2019-90518
. 10.1115/GT2019-90518
44.
Dai
,
S. J.
,
Xiao
,
Y.
,
He
,
L. M.
,
Jin
,
T.
, and
Zhao
,
Z. C.
,
2016
, “
Film Cooling From a Cylindrical Hole With Parallel Auxiliary Holes Influences
,”
Numer. Heat Transfer, Part A
,
69
(
5
), pp.
497
511
.10.1080/10407782.2015.1081023
45.
Zhu
,
R.
,
Simon
,
T. W.
, and
Xie
,
G. N.
,
2018
, “
Influence of Secondary Hole Injection Angle on Enhancement of Film Cooling Effectiveness With Horn-Shaped or Cylindrical Primary Holes
,”
Numer. Heat Transfer, Part A
,
74
(
5
), pp.
1207
1227
.10.1080/10407782.2018.1490088
46.
Park
,
S.
,
Chung
,
H.
,
Choi
,
S. M.
,
Kim
,
S. H.
, and
Cho
,
H. H.
,
2017
, “
Design of Sister Hole Arrangements to Reduce Kidney Vortex for Film Cooling Enhancement
,”
J. Mech. Sci. Technol.
,
31
(
8
), pp.
3981
3992
.10.1007/s12206-017-0745-5
47.
Wu
,
H.
,
Cheng
,
H.
,
Li
,
Y.
,
Rong
,
C.
, and
Ding
,
S.
,
2016
, “
Effects of Side Hole Position and Blowing Ratio on Sister Hole Film Cooling Performance in a Flat Plate
,”
Appl. Therm. Eng.
,
93
, pp.
718
730
.10.1016/j.applthermaleng.2015.09.118
48.
Cheng
,
H.
,
Wu
,
H.
,
Li
,
Y.
, and
Ding
,
S.
,
2017
, “
Effect of Rotation on a Downstream Sister Holes Film Cooling Performance in a Flat Plate Model
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
154
166
.10.1016/j.expthermflusci.2017.03.001
49.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Lu
,
H.
,
2020
, “
Effects of Diameter Ratio and Inclination Angle on flow and Heat Transfer Characteristics of Sister Holes Film Cooling
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104426
.10.1016/j.icheatmasstransfer.2019.104426
50.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1996
, “
A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
12
(
1
), pp.
1
12
.10.1016/0894-1777(95)00013-5
51.
Ghiaasiaan
,
S. M.
,
2011
,
Convective Heat and Mass Transfer
,
Cambridge University Press
,
New York
.
52.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-[Epsilon] Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
53.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.10.1115/1.4036007
You do not currently have access to this content.