Abstract

The research was conducted to examine the dispersion of pollutants ejected from a chimney a around three-dimensional rectangular building. Regarding the experimental study, the wind tunnel experiment comprises data acquired through the dispersion of continuous source tracer discharges (air seeded with glycerin particles) from a punctual source situated in a regular network of a building-like obstacle, and these data include measurements of mean velocity and turbulence parameters. The relevant data are followed using particle image velocimetry (PIV) to track various instantaneous and mean dynamic characteristics. Concerning the numerical study, the suggested model simulates both the dynamics and the heat transfer flow field using the overall mean three-dimensional Navier–Stokes equations with a Reynolds stress model (RSM) turbulence closure model. The findings of a deep comparison of turbulent flow and dispersion between a full wind tunnel experiment and the model predictions are reported. A high degree of concordance was obtained with the experimental flow and numerical simulation data. The detailed investigation, which included numerical and winds tunnel studies, was performed to evaluate the impact of wind velocity on the pollutant dispersion issued from a chimney around the building in their vicinity. The simulated mean flow results were checked against the respective wind tunnel tests, demonstrating for most flow positions be in good agreement. The results clearly showed how wind velocity influenced the environmental air flows and pollutant dispersal pathways. The results of this study show that the shape of the building and the resulting interaction between the wind structure play a determining factor in the distribution of pollutants around a building, thereby affecting the air quality in the various parts of the building. The work has clearly indicated that sophisticated CFD modeling can yield valuable insights for city planners when changes to the urban landscape are being addressed, so that appropriate design approaches can be checked according to environmental suitability criteria.

References

1.
Sawford
,
B. L.
,
Frost
,
C. C.
, and
Allan
,
T. C.
,
1985
, “
Atmospheric Boundary-Layer Measurements of Concentration Statistics From Isolated and Multiple Sources
,”
Boundary-Layer Meteorol.
,
31
(
3
), pp.
249
268
.10.1007/BF00120895
2.
Mylne
,
K. R.
,
1993
, “
The Vertical Profile of Concentration Fluctuations in Near Surface Plumes
,”
Boundary-Layer Meteorol.
,
65
(
1–2
), pp.
111
136
.10.1007/BF00708820
3.
Bara
,
B. M.
,
Wilson
,
D. J.
, and
Zelt
,
B. W.
,
1992
, “
Concentration Fluctuation Profiles From a Water Channel Simulation of a Ground-Level Release
,”
Atmos. Environ.
,
26
(
6
), pp.
1053
1062
.10.1016/0960-1686(92)90037-L
4.
Yee
,
E.
,
Wilson
,
D. J.
, and
Zelt
,
B. W.
,
1993
, “
Probability Distributions of Concentration Fluctuations of a Weakly Diffusive Passive Plume in a Turbulent Boundary Layer
,”
Boundary-Layer Meteorol.
,
64
(
4
), pp.
321
354
.10.1007/BF00711704
5.
Yee
,
E.
, and
Biltoft
,
C. A.
,
2004
, “
Concentration Fluctuation Measurements in a Plume Dispersing Through a Regular Array of Obstacles
,”
Boundary-Layer Meteorol.
,
111
(
3
), pp.
363
415
.10.1023/B:BOUN.0000016496.83909.ee
6.
Sykes
,
R. I.
,
Lewellen
,
W. S.
, and
Parker
,
S. F.
,
1984
, “
A Turbulent-Transport Model for Concentration Fluctuations and Fluxes
,”
J. Fluid Mech.
,
139
, pp.
193
218
.10.1017/S002211208400032X
7.
Sykes
,
R. I.
,
Lewellen
,
W. S.
, and
Parker
,
S. F.
,
1986
, “
A Gaussian Plume Model of Atmospheric Dispersion Based on Second-Order Closure
,”
J. Clim. Appl. Meteorol.
,
25
(
3
), pp.
322
331
.10.1175/1520-0450(1986)025<0322:AGPMOA>2.0.CO;2
8.
Kaplan
,
H.
, and
Dinar
,
N.
,
1988
, “
A Stochastic Model for Dispersion and Concentration Distribution in Homogeneous Turbulence
,”
J. Fluid Mech.
,
190
, pp.
121
140
.10.1017/S0022112088001247
9.
Thomson
,
D. J.
,
1990
, “
A Stochastic Model for the Motion of Particle Pairs in Isotropic high-Reynolds-Number Turbulence, and Its Application to the Problem of Concentration Variance
,”
J. Fluid Mech.
,
210
, pp.
113
153
.10.1017/S0022112090001239
10.
Aleksey
,
A. R.
,
Boris
,
A. G.
,
Egor
,
V. L.
,
Anastasia
,
N. T.
,
Alexander
,
S. V.
,
Nikolai
,
E. Z.
, and
Ilia
,
K. P.
,
2020
, “
Graz Lagrangian Model (GRAL) for Pollutants Tracking and Estimating Sources Partial Contributions to Atmospheric Pollution in Highly Urbanized Areas
,”
Atmosphere
,
11
, p.
1375
.10.3390/atmos11121375
11.
Castro
,
I. P.
, and
Robins
,
A. G.
,
1977
, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.10.1017/S0022112077000172
12.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
85
92
.10.1115/1.2910118
13.
Hussein
,
H. J.
, and
Martinuzzi
,
R. J.
,
1996
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phys. Fluids
,
8
(
3
), pp.
764
780
.10.1063/1.868860
14.
Meinders
,
E.
,
Hanjalic
,
K.
, and
Martinuzzi
,
R.
,
1999
, “
Experimental Study of the Local Convection Heat Transfer From a Wall-Mounted Cube in Turbulent Channel Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
564
573
.10.1115/1.2826017
15.
Lim
,
H. C.
,
Castro
,
I. P.
, and
Hoxey
,
R. P.
,
2007
, “
Bluff Bodies in Deep Turbulent Boundary Layers: Reynolds-Number Issues
,”
J. Fluid Mech.
,
571
, pp.
97
118
.10.1017/S0022112006003223
16.
Mahjoub
,
S. N.
,
Mhiri
,
H.
,
Bournot
,
H.
, and
Le Palec
,
G.
,
2008
, “
Experimental and Numerical Modelling of the Three-Dimensional Incompressible Flow Behaviour in the Near Wake of Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
471
502
.10.1016/j.jweia.2007.12.001
17.
Mahjoub
,
S. N.
,
Mhiri
,
H.
,
Caminat
,
P.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2008
, “
Wind Tunnel Investigation and Numerical Simulation of the Near Wake Dynamics for Rectangular Obstacles
,”
Environ. Eng. Sci.
,
25
(
7
), pp.
1037
1060
.10.1089/ees.2007.0169
18.
Mahjoub
,
S. N.
,
Mhiri
,
H.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2005
, “
Experimental and Numerical Analysis of Pollutant Dispersion From a Chimney
,”
Atmos. Environ.
,
39
, pp.
1727
1738
.10.1016/j.atmosenv.2004.11.040
19.
Mahjoub
,
S. N.
,
Habli
,
S.
,
Mhiri
,
H.
,
Le Palec
,
G.
, and
Bournot
,
H.
,
2007
, “
Flow Field Measurement in Crossflowing Elevated Jet
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
551
562
.10.1115/1.2717614
20.
Prashant
,
A.
, and
Arun
,
K. S.
,
2011
, “
Three-Dimensional Numerical Study of Flow and Species Transport in an Elevated Jet in Crossflow
,”
Int. J. Heat Mass Transfer
,
54
(s1-3), pp.
92
105
.10.1016/j.ijheatmasstransfer.2010.07.068
21.
Jianlong
,
C.
,
Yang
,
D.
,
Xudong
,
S.
,
Yongjuan
,
Z.
, and
Shizhen
,
Z.
,
2019
, “
Investigation and Analysis of Vortex and Application of Jet in Crossflow
,”
Case Stud. Therm. Eng.
,
14
, p.
1004592
.10.1016/j.csite.2019.100459
22.
Radhouane
,
A.
,
Mahjoub
,
S. N.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2019
, “
Wind Tunnel Experiments of Multijets in Cross Flow: Effect of the Injection Ratio
,”
Exp. Therm. Fluid Sci.
,
105
, pp.
234
246
.10.1016/j.expthermflusci.2019.04.007
23.
Malcangio
,
D.
,
Cuthbertson
,
A.
,
Ben Meftah
,
M.
, and
Mossa
,
M.
,
2020
, “
Computational Simulation of Round Thermal Jets in an Ambient Cross Flow Using a Large-Scale Hydrodynamic Model
,”
J. Hydraul. Res.
,
58
(
6
), pp.
920
937
.10.1080/00221686.2019.1684392
24.
Klotz
,
L.
,
Gumowski
,
K.
, and
Wesfreid
,
J. E.
,
2019
, “
Experiments on a Jet in a Crossflow in the Low-Velocity-Ratio Regime
,”
J. Fluid Mech.
,
863
, pp.
386
406
.10.1017/jfm.2018.974
25.
Lei
,
W.
, and
Li-Hao
,
F.
,
2020
, “
The Interactions of Rectangular Synthetic Jets With a Laminar Cross-Flow
,”
J. Fluid Mech.
,
899
, p. A32.10.1017/jfm.2020.430
26.
Sachidananda
,
B.
, and
Arun
,
K. S.
,
2020
, “
Evolution of the Flow Structures in an Elevated Jet in Crossflow
,”
Phys. Fluids
,
32
, p.
015102
.10.1063/1.5129498
27.
Inthavideth
,
X.
,
Nobumasa
,
S.
, and
Phommachanh
,
S.
,
2021
, “
Wind Tunnel Experiments on Smoke Diffusion From a Chimney
,”
IOP Conf. Ser.
,
1109
(
1
), p.
012055
.10.1088/1757-899X/1109/1/012055
28.
Adair
,
D.
,
1990
, “
Numerical Calculations of Aerial Dispersion From Elevated Sources
,”
Appl. Math. Modell.
,
14
(
9
), pp.
459
476
.10.1016/0307-904X(90)90170-A
29.
Liu
,
C. H.
, and
Barth
,
M. C.
,
2002
, “
Large-Eddy Simulation of Flow and Scalar Transport in a Modeled Street Canyon
,”
J. Appl. Meteorol.
,
41
(
6
), pp.
660
673
.10.1175/1520-0450(2002)041<0660:LESOFA>2.0.CO;2
30.
Yuandong
,
H.
,
Xiaonan
,
H.
, and
Ningbin
,
Z.
,
2009
, “
Impact of Wedge-Shaped Roofs on Airflow and Pollutant Dispersion Inside Urban Street Canyons
,”
Build. Environ.
,
44
(
12
), pp.
2335
2347
.10.1016/j.buildenv.2009.03.024
31.
Yuandong
,
H.
, and
Zhonghua
,
Z.
,
2013
, “
A Numerical Study of Airflow and Pollutant Dispersion Inside an Urban Street Canyon Containing an Elevated Expressway
,”
Environ. Model. Assess.
,
18
(
1
), pp.
105
114
.10.1007/s10666-012-9332-4
32.
Wang
,
Y.
,
Jackson
,
P.
, and
Sui
,
J.
,
2014
, “
Simulation of Turbulent Flow Around a Surface Mounted Finite Square Cylinder
,”
J. Thermophys. Heat Transfer
,
28
(
1
), pp.
118
132
.10.2514/1.T3884
33.
Zhang
,
D.
,
Cheng
,
L.
,
Hongwei
,
A.
, and
Zhao
,
M.
,
2017
, “
Direct Numerical Simulation of Flow Around a Surface-Mounted Finite Square Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
,
29
(
4
), p.
045101
.10.1063/1.4979479
34.
Yu
,
Y.
,
Kwok
,
K. C. S.
,
Liu
,
X. P.
, and
Zhang
,
Y.
,
2017
, “
Air Pollutant Dispersion Around High-Rise Buildings Under Different Angles of Wind Incidence
,”
J. Wind Eng. Ind. Aerodyn.
,
167
, pp.
51
61
.10.1016/j.jweia.2017.04.006
35.
Tominaga
,
Y.
, and
Stathopoulos
,
T.
,
2018
, “
CFD Simulations of Near-Field Pollutant Dispersion With Different Plume Buoyancies
,”
Build. Environ.
,
131
, pp.
128
139
.10.1016/j.buildenv.2018.01.008
36.
Sedighi
,
A. A.
, and
Bazargan
,
M.
,
2019
, “
A CFD Analysis of the Pollutant Dispersion From Cooling Towers With Various Configurations in the Lower Region of Atmospheric Boundary Layer
,”
Sci. Total Environ.
,
696
, p.
133939
.10.1016/j.scitotenv.2019.133939
37.
Gnatowska
,
R.
,
2019
, “
Wind‐Induced Pressure Loads on Buildings in Tandem Arrangement in Urban Environment
,”
Environ. Fluid Mech.
,
19
(
3
), pp.
699
718
.10.1007/s10652-018-9646-0
38.
Marvoidis
,
I.
,
2003
, “
Field and Wind Tunnel Investigations of Plume Dispersion Around Single Surface Obstacles
,”
Atmos. Environ.
,
37
(
21
), pp.
2903
2918
.10.1016/S1352-2310(03)00300-5
39.
Allegrini
,
J.
,
2018
, “
A Wind Tunnel Study on Three-Dimensional Buoyant Flows in Street Canyons With Different Roof Shapes and Building Lengths
,”
Build.Environ.
,
143
, pp.
71
88
.10.1016/j.buildenv.2018.06.056
40.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
41.
Yuan
,
L. L.
, and
Street
,
R. L.
,
1998
, “
Trajectory and Entrainment of a Round Jet in Crossflow
,”
Phys Fluids
,
10
(
9
), pp.
2323
2335
.10.1063/1.869751
42.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
43.
Huq
,
P.
, and
Dhanak
,
M. R.
,
1996
, “
The Bifurcation of Circular Jets in Crossflow
,”
Phys. Fluids
,
8
(
3
), pp.
754
763
.10.1063/1.868859
44.
Cortelezzi
,
L.
, and
Karagozian
,
A. R.
,
2001
, “
On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets
,”
J. Fluid Mech.
,
446
, pp.
347
373
.10.1017/S0022112001005894
45.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2006
, “
Two-Dimensional Model Problem to Explain Counter-Rotating Vortex Pair Formation in a Transverse Jet
,”
Phys. Fluids J.
,
18
(
8
), pp.
85
103
.10.1063/1.2236304
46.
Sharmishtha
,
C.
, and
Utpal
,
B.
,
2017
, “
Review of Jets in a Cross Flow-Experimental and Numerical Approach
,”
Int. J. Eng. Adv. Technol.
,
7
(
2
), pp.
114
128
.
47.
Mahjoub
,
N.
,
Mhiri
,
H.
,
Golli
,
S.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2003
, “
Three Dimensional Numerical Calculations of a Jet in an External Crossflow: Application to Pollutant Dispersion
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
510
522
.10.1115/1.1560158
48.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.10.1017/S0022112000003384
49.
Schieste
,
R.
, and
Launder
,
B. E.
,
1993
,
Modélisation et Simulation Des Écoulements Turbulents
,
Hermès
,
Paris, France
.
50.
Demuren
,
A. O.
, and
Rodi
,
W.
,
1987
, “
Three Dimensional Numerical Calculations of Flow and Plume Spreading Past Cooling Towers
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
113
119
.10.1115/1.3248029
51.
Patankar
,
S. V.
,
1980
, “
Numerical Heat Transfer and Fluid Flow
,”
Series in Computational Methods in Mechanics and Thermal Sciences
,
McGraw-Hill
,
New York
.
52.
Krishnan
,
M.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
, pp.
379
407
.10.1146/annurevfluid-120710-101115
53.
Karagozian
,
A. R.
,
2014
, “
The Jet in Crossflow
,”
Phys. Fluids
,
26
(
10
), p.
101303
.10.1063/1.4895900
You do not currently have access to this content.