Abstract

This study aims to numerically investigate thermal–hydraulic performance augmentation of ellipsoidal 45 deg dimpled U-tubes with various bend curvatures subjected to constant external heat flux (q=10kW/m2) for a range of Reynolds numbers (5000 ≤ Re30,000). Three smooth U bends with curvatures radii of 0.695Dh, 1.5Dh, and 2.0Dh, where Dh is the hydraulic diameter of the smooth tube, are used in both smooth and enhanced tubes. A comparison of thermal-hydraulic characteristics of dimpled and smooth U-tubes is carried out using steady-state Reynolds averaged Navier–Stokes simulations. The analysis shows that the performance of the dimpled U-tube is superior to the smooth tube for all bend curvatures. The swirl flow patterns generated by the dimples induce early flow reattachment in the postbend section of the tube, which enhances its heat transfer rate. The dimpled U-tube having the shortest curvature radius significantly alters Dean vortices, which leads to a substantial improvement in its heat and flow performances. The dimpled U-tube having the shortest curvature radius enhances the thermal–hydraulic performance by 21.4% while for other curvature radii (1.5Dh, and 2.0Dh), the performance augmentations are found to be 10.7% and 8.9%, respectively.

References

1.
Koushik
,
C.
, and
Prakash
,
K.
,
2020
, “
Steady and Unsteady Numerical Investigations of Laminar Fluid Flow and Heat Transfer in a 180° Bend With Bypass
,”
Int. J. Heat Mass Transfer
,
151
, p.
119357
.10.1016/j.ijheatmasstransfer.2020.119357
2.
Forsberg
,
C.
,
2021
, “
Chapter 8—Heat Exchangers
,”
Heat Transfer Principles and Applications
,
Academic Press
, Cambridge, MA, pp.
305
341
.
3.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
4.
Hellstrom
,
F.
,
2010
,
Numerical Computations of the Unsteady Flow in Turbochargers
, KTH Royal Institute of Technology, Stockholm,
Sweden
.
5.
Pradhan
,
H. K.
,
Sahoo
,
A. K.
,
Roul
,
M. K.
,
Awad
,
M. M.
, and
Barik
,
A. K.
,
2020
, “
Heat Transfer Characteristics of an 180° Bend Pipe of Different Cross Sections Using Nano-Enhanced Ionic Liquids (NEILs)
,”
SN Appl. Sci.
,
2
(
6
), p.
1127
.10.1007/s42452-020-2915-9
6.
Peeters
,
J. W. R.
, and
Sandham
,
N. D.
,
2019
, “
Turbulent Heat Transfer in Channels With Irregular Roughness
,”
Int. J. Heat Mass Transfer
,
138
, pp.
454
467
.10.1016/j.ijheatmasstransfer.2019.04.013
7.
Xing
,
Y.
,
Zhi
,
T.
,
Haiwang
,
L.
, and
Yitu
,
T.
,
2016
, “
Experimental Investigation of Surface Roughness Effects on Flow Behavior and Heat Transfer Characteristics for Circular Microchannels
,”
Chin. J. Aeronaut.
,
29
(
6
), pp.
1575
1581
.10.1016/j.cja.2016.10.006
8.
Tummers
,
M. J.
, and
Steunebrink
,
M.
,
2019
, “
Effect of Surface Roughness on Heat Transfer in Rayleigh-Bénard Convection
,”
Int. J. Heat Mass Transfer
,
139
, pp.
1056
1064
.10.1016/j.ijheatmasstransfer.2019.05.066
9.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renew. Energy
,
115
, pp.
824
835
.10.1016/j.renene.2017.09.010
10.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.10.1016/0017-9310(80)90177-5
11.
García
,
A.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2005
, “
Experimental Study of Heat Transfer Enhancement With Wire Coil Inserts in Laminar-Transition-Turbulent Regimes at Different Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4640
4651
.10.1016/j.ijheatmasstransfer.2005.04.024
12.
Jaffal
,
H. M.
,
Ghani
,
I. A.
, and
Al-Obaidi
,
A. R.
,
2021
, “
The Effect of Interruptions on Thermal Characteristics of Corrugated Tube,” Case Stud
,”
Therm. Eng.
,
25
, p.
100910
.10.1016/j.csite.2021.100910
13.
Garcia
,
A.
,
Solano
,
J.
,
Vicente
,
P.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
196
201
.10.1016/j.applthermaleng.2011.10.030
14.
Andrzejczyk
,
R.
,
Muszynski
,
T.
, and
Kozak
,
P.
,
2019
, “
Experimental Investigation of Heat Transfer Enhancement in Straight and U-Bend Double-Pipe Heat Exchanger With Wire Insert
,”
Chem. Eng. Process. Process Intensif.
,
136
, pp.
177
190
.10.1016/j.cep.2019.01.003
15.
Kumar
,
N. T. R.
,
Bhramara
,
P.
,
Kirubeil
,
A.
,
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2018
, “
Effect of Twisted Tape Inserts on Heat Transfer, Friction Factor of Fe3O4 Nanofluids Flow in a Double Pipe U-Bend Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
53
62
.10.1016/j.icheatmasstransfer.2018.03.020
16.
Prasad
,
P. V. D.
, and
Gupta
,
A.
,
2016
, “
Experimental Investigation on Enhancement of Heat Transfer Using Al2O3/Water Nanofluid in a U-Tube With Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
154
161
.10.1016/j.icheatmasstransfer.2016.03.019
17.
Sundar
,
L. S.
,
Kumar
,
N. T. R.
,
Addis
,
B. M.
,
Bhramara
,
P.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2019
, “
Heat Transfer and Effectiveness Experimentally-Based Analysis of Wire Coil With Core-Rod Inserted in Fe3O4/Water Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
134
, pp.
405
419
.10.1016/j.ijheatmasstransfer.2019.01.041
18.
Cho
,
K.
, and
Tae
,
S. J.
,
2001
, “
Condensation Heat Transfer for R-22 and R-407C Refrigerant-Oil Mixtures in a Microfin Tube With a U-Bend
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2043
2051
.10.1016/S0017-9310(00)00253-2
19.
Sundar
,
L. S.
,
Bhramara
,
P.
,
Kumar
,
N. T. R.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2017
, “
Experimental Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4 Nanofluid Flow in a Horizontal Plain Tube With Return Bend and Wire Coil Inserts
,”
Int. J. Heat Mass Transfer
,
109
, pp.
440
453
.10.1016/j.ijheatmasstransfer.2017.02.022
20.
Vinze
,
R.
,
Khade
,
A.
,
Kuntikana
,
P.
,
Ravitej
,
M.
,
Suresh
,
B.
,
Kesavan
,
V.
, and
Prabhu
,
S. V.
,
2019
, “
Effect of Dimple Pitch and Depth on Jet Impingement Heat Transfer Over Dimpled Surface Impinged by Multiple Jets
,”
Int. J. Therm. Sci.
,
145
, p.
105974
.10.1016/j.ijthermalsci.2019.105974
21.
Maithani
,
R.
, and
Kumar
,
A.
,
2020
, “
Correlations Development for Nusselt Number and Friction Factor in a Dimpled Surface Heat Exchanger Tube
,”
Exp. Heat Transfer
,
33
(
2
), pp.
101
122
.10.1080/08916152.2019.1573863
22.
Cheraghi
,
M. H.
,
Ameri
,
M.
, and
Shahabadi
,
M.
,
2020
, “
Numerical Study on the Heat Transfer Enhancement and Pressure Drop Inside Deep Dimpled Tubes
,”
Int. J. Heat Mass Transfer
,
147
, p.
118845
.10.1016/j.ijheatmasstransfer.2019.118845
23.
Chen
,
J.
,
Müller-Steinhagen
,
H.
, and
Duffy
,
G. G.
,
2001
, “
Heat Transfer Enhancement in Dimpled Tubes
,”
Appl. Therm. Eng.
,
21
(
5
), pp.
535
547
.10.1016/S1359-4311(00)00067-3
24.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
L.
,
Wang
,
Y.
,
Ding
,
H.
, and
Zhang
,
J.
,
2018
, “
Numerical Investigation on Heat Transfer Performance and Flow Characteristics in Enhanced Tube With Dimples and Protrusions
,”
Int. J. Heat Mass Transfer
,
122
, pp.
602
613
.10.1016/j.ijheatmasstransfer.2018.01.106
25.
Firoozi
,
A. O.
,
Majidi
,
S.
, and
Ameri
,
M.
,
2020
, “
A Numerical Assessment on Heat Transfer and Flow Characteristics of Nanofluid in Tubes Enhanced With a Variety of Dimple Configurations
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100578
.10.1016/j.tsep.2020.100578
26.
Manoram
,
R. B.
,
Moorthy
,
R. S.
, and
Ragunathan
,
R.
,
2021
, “
Investigation on Influence of Dimpled Surfaces on Heat Transfer Enhancement and Friction Factor in Solar Water Heater
,”
J. Therm. Anal. Calorim.
,
145
(
2
), pp.
541
558
.10.1007/s10973-020-09746-0
27.
Dagdevir
,
T.
,
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2019
, “
Heat Transfer Performance and Flow Characteristic in Enhanced Tube With the Trapezoidal Dimples
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104299
.10.1016/j.icheatmasstransfer.2019.104299
28.
Jing
,
Q.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2019
, “
Thermal-Hydraulic Performance and Entropy Generation of Supercritical Carbon Dioxide in Heat Exchanger Channels With Teardrop Dimple/Protrusion
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1082
1096
.10.1016/j.ijheatmasstransfer.2019.02.058
29.
Fan
,
Q.
, and
Yin
,
X.
,
2008
, “
3-D Numerical Study on the Effect of Geometrical Parameters on Thermal Behavior of Dimple Jacket in Thin-Film Evaporator
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1875
1881
.10.1016/j.applthermaleng.2007.11.024
30.
Li
,
M.
,
Khan
,
T. S.
,
Al-Hajri
,
E.
, and
Ayub
,
Z. H.
,
2016
, “
Geometric Optimization for Thermal-Hydraulic Performance of Dimpled Enhanced Tubes for Single Phase Flow
,”
Appl. Therm. Eng.
,
103
, pp.
639
650
.10.1016/j.applthermaleng.2016.04.141
31.
Liang
,
Z.
,
Xie
,
S.
,
Liang
,
Z.
,
Jie
,
Z.
,
Wang
,
Y.
, and
Yin
,
Y.
,
2017
, “
Influence of Geometric Parameters on the Thermal Hydraulic Performance of an Ellipsoidal Protruded Enhanced Tube
,”
Numer. Heat Transfer Part A Appl.
,
72
(
2
), pp.
153
170
.10.1080/10407782.2017.1359000
32.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
L.
, and
Wang
,
Y.
,
2018
, “
A Numerical Study on Heat Transfer Enhancement and Flow Structure in Enhanced Tube With Cross Ellipsoidal Dimples
,”
Int. J. Heat Mass Transfer
,
125
, pp.
434
444
.10.1016/j.ijheatmasstransfer.2018.04.106
33.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
J.
,
Zhang
,
L.
,
Wang
,
Y.
, and
Ding
,
H.
,
2019
, “
Numerical Investigation on Flow and Heat Transfer in Dimpled Tube With Teardrop Dimples
,”
Int. J. Heat Mass Transfer
,
131
, pp.
713
723
.10.1016/j.ijheatmasstransfer.2018.11.112
34.
Zhang
,
L.
,
Xiong
,
W.
,
Zheng
,
J.
,
Liang
,
Z.
, and
Xie
,
S.
,
2021
, “
Numerical Analysis of Heat Transfer Enhancement and Flow Characteristics Inside Cross-Combined Ellipsoidal Dimple Tubes,” Case Stud
,”
Therm. Eng.
,
25
p.
100937
.10.1016/j.csite.2021.100937
35.
Sabir
,
R.
,
Khan
,
M. M.
,
Sheikh
,
N. A.
,
Ahad
,
I. U.
, and
Brabazon
,
D.
,
2020
, “
Assessment of Thermo-Hydraulic Performance of Inward Dimpled Tubes With Variation in Angular Orientations
,”
Appl. Therm. Eng.
,
170
, p.
115040
.10.1016/j.applthermaleng.2020.115040
36.
Sabir
,
R.
,
Khan
,
M. M.
,
Sheikh
,
N. A.
, and
Ahad
,
I. U.
,
2022
, “
Effect of Dimple Pitch on Thermal-Hydraulic Performance of Tubes Enhanced With Ellipsoidal and Teardrop Dimples, Case Studies
,”
Therm. Eng.
,
31
, p.
101835
.10.1016/j.csite.2022.101835
37.
Li
,
M.
,
Khan
,
T. S.
,
Al-Hajri
,
E.
, and
Ayub
,
Z. H.
,
2016
, “
Single Phase Heat Transfer and Pressure Drop Analysis of a Dimpled Enhanced Tube
,”
Appl. Therm. Eng.
,
101
, pp.
38
46
.10.1016/j.applthermaleng.2016.03.042
38.
Munson
,
B. R.
,
Young
,
D. F.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2009
,
Elementary Fluid Dynamics - The Bernoulli Equation
,
Wiley
,
Singapore
.
39.
ANSYS
,
2010
,
Theory Guide, Fluent 13.0, A.
,
ANSYS
, Canonsburg, PA.
40.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1964
, “
Heat Transfer and Pressure Loss in Helically Coiled Tubes With Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
7
(
11
), pp.
1207
1216
.10.1016/0017-9310(64)90062-6
41.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study of Forced Convective Heat Transfer in Curved Pipes (2nd Report, Turbulent Region)
,”
Int. J. Heat Mass Transfer
,
10
(
1
), pp.
37
59
.10.1016/0017-9310(67)90182-2
42.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang Und Druckverlust in Rohrschlangen
,”
Chem. Ing. Tech.
,
39
(
13
), pp.
781
789
.10.1002/cite.330391302
43.
Mandal
,
M. M.
, and
Nigam
,
K. D. P.
,
2009
, “
Experimental Study on Pressure Drop and Heat Transfer of Turbulent Flow in Tube in Tube Helical Heat Exchanger
,”
Ind. Eng. Chem. Res.
,
48
(
20
), pp.
9318
9324
.10.1021/ie9002393
44.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Pipe Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
45.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction Factor in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
You do not currently have access to this content.