Abstract

The technological opportunities enabled by understanding and controlling microscale systems have not yet been capitalized to disruptively improve energy processes, especially heat transfer and power generation. The main limitation corresponds to the laminar flows typically encountered in microdevices, which result in small mixing and transfer rates. This is a central unsolved problem in the thermal–fluid sciences. Therefore, this work focuses on analyzing the potential of supercritical fluids to achieve turbulence in microconfined systems by studying their thermophysical properties. In particular, a real-gas thermodynamic model, combined with high-pressure transport coefficients, is utilized to characterize the Reynolds number achieved as a function of supercritical pressures and temperatures. The results indicate that fully turbulent flows can be attained for a wide range of working fluids related to heat transfer applications, power cycles and energy conversion systems, and presenting increment ratios of O(100) with respect to atmospheric (subcritical) thermodynamic conditions. The underlying physical mechanism to achieve relatively high Reynolds numbers is based on operating within supercritical thermodynamic states (close to the critical point and pseudo-boiling region) in which density is relatively large while dynamic viscosity is similar to that of a gas. In addition, based on the Reynolds numbers achieved and the thermophysical properties of the fluids studied, an assessment of heat transfer at turbulent microfluidic conditions is presented to demonstrate the potential of supercritical fluids to enhance the performances of standard microfluidic systems by factors up to approximately 50×.

References

1.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
, 2nd ed.,
Artech House
,
Boston, MA
.
2.
European Commission,
2016
, “A EU Strategy on Heating and Cooling,” European Commission, Brussels, Belgium, Report No.
COM(2016)51/F1
.https://energy.ec.europa.eu/topics/energy-efficiency/heating-and-cooling_en
3.
Sinton
,
D.
,
2014
, “
Energy: The Microfluidic Frontier
,”
Lab Chip
,
14
(
17
), pp.
3127
3134
.10.1039/C4LC00267A
4.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
5.
Sreenivasan
,
K. R.
,
2019
, “
Turbulent Mixing: A Perspective
,”
PNAS
,
116
(
37
), pp.
18175
18183
.10.1073/pnas.1800463115
6.
Hardt
,
S.
, and
Schönfeld
,
F.
,
2007
,
Microfluidic Technologies for Miniaturized Analysis Systems
, 1st ed.,
Springer
,
Cambridge, MA
.
7.
Li
,
H.
,
Ewoldt
,
R.
, and
Olsen
,
M. G.
,
2005
, “
Turbulent and Transitional Velocity Measurements in a Rectangular Microchannel Using Microscopic Particle Image Velocimetry
,”
Exp. Therm. Fluid Sci.
,
29
(
4
), pp.
435
446
.10.1016/j.expthermflusci.2004.06.001
8.
Sharp
,
K. V.
, and
Adrian
,
R. J.
,
2004
, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
,
36
(
5
), pp.
741
747
.10.1007/s00348-003-0753-3
9.
Wang
,
G. R.
,
Yang
,
F.
, and
Zhao
,
W.
,
2016
, “
Microelectrokinetic Turbulence in Microfluidics at Low Reynolds Number
,”
Phys. Rev. E.
,
93
(
1
), p.
013106
.10.1103/PhysRevE.93.013106
10.
Nan
,
K.
,
Hu
,
Z.
,
Zhao
,
W.
,
Wang
,
K.
,
Bai
,
J.
, and
Wang
,
G.
,
2020
, “
Large-Scale Flow in Micro Electrokinetic Turbulent Mixer
,”
Micromachines
,
11
(
9
), p.
813
.10.3390/mi11090813
11.
Wang
,
G. R.
,
Yang
,
F.
, and
Zhao
,
W.
,
2014
, “
There Can Be Turbulence in Microfluidics at Low Reynolds Number
,”
Lab Chip
,
14
(
8
), pp.
1452
1458
.10.1039/C3LC51403J
12.
Wibel
,
W.
, and
Ehrhard
,
P.
,
2009
, “
Experiments on the Laminar/Turbulent Transition of Liquid Flows in Rectangular Microchannels
,”
Heat Transfer Eng.
,
30
(
1–2
), pp.
70
77
.10.1080/01457630802293449
13.
You
,
J. B.
,
Kang
,
K.
,
Tran
,
T. T.
,
Park
,
H.
,
Hwang
,
W. R.
,
Kim
,
J. M.
, and
Im
,
S. G.
,
2015
, “
PDMS-Based Turbulent Microfluidic Mixer
,”
Lab Chip
,
15
(
7
), pp.
1727
1735
.10.1039/C5LC00070J
14.
Camargo
,
C. L.
,
Shiroma
,
L. S.
,
Giordano
,
G. F.
,
Gobbi
,
A. L.
,
Vieira
,
L. C. S.
, and
Lima
,
R. S.
,
2016
, “
Turbulence in Microfluidics: Cleanroom-Free, Fast, Solventless, and Bondless Fabrication and Application in High Throughput Liquid-Liquid Extraction
,”
Anal. Chim. Acta
,
940
, pp.
73
83
.10.1016/j.aca.2016.08.052
15.
Fallahi
,
H.
,
Zhang
,
J.
,
Phan
,
H.-P.
, and
Nguyen
,
N.-T.
,
2019
, “
Flexible Microfluidics: Fundamentals, Recent Developments, and Applications
,”
Micromachines
,
10
(
12
), p.
830
.10.3390/mi10120830
16.
Jofre
,
L.
, and
Urzay
,
J.
,
2021
, “
Transcritical Diffuse-Interface Hydrodynamics of Propellants in High-Pressure Combustors of Chemical Propulsion Systems
,”
Prog. Energy Combust. Sci.
,
82
, p.
100877
.10.1016/j.pecs.2020.100877
17.
Gavoille
,
T.
,
Pannacci
,
N.
,
Bergeot
,
G.
,
Marliere
,
C.
, and
Marre
,
S.
,
2019
, “
Microfluidic Approaches for Accessing Thermophysical Properties of Fluid Systems
,”
React. Chem. Eng.
,
4
(
10
), pp.
1721
1739
.10.1039/C9RE00130A
18.
Fadaei
,
H.
,
Shaw
,
J. M.
, and
Sinton
,
D.
,
2013
, “
Bitumen-Toluene Mutual Diffusion Coefficients Using Microfluidics
,”
Energy Fuels
,
27
(
4
), pp.
2042
2048
.10.1021/ef400027t
19.
Song
,
W.
,
Fadaei
,
H.
, and
Sinton
,
D.
,
2014
, “
Determination of Dew Point Conditions for CO2 With Impurities Using Microfluidics
,”
Environ. Sci. Technol.
,
48
(
6
), pp.
3567
3574
.10.1021/es404618y
20.
Nigar
,
H.
,
Julián
,
I.
,
Mallada
,
R.
, and
Santamaría
,
J.
,
2018
, “
Microwave-Assisted Catalytic Combustion for the Efficient Continuous Cleaning of VOC-Containing Air Streams
,”
Environ. Sci. Technol.
,
52
(
10
), pp.
5892
5901
.10.1021/acs.est.8b00191
21.
Zhang
,
F.
,
Marre
,
S.
, and
Erriguible
,
A.
,
2020
, “
Mixing Intensification Under Turbulent Conditions in a High Pressure Microreactor
,”
Chem. Eng. J.
,
382
, p.
122859
.10.1016/j.cej.2019.122859
22.
Lemanov
,
V. V.
,
Terekhov
,
V. I.
,
Sharov
,
K. A.
, and
Shumeiko
,
A. A.
,
2013
, “
An Experimental Study of Submerged Jets at Low Reynolds Numbers
,”
Tech. Phys. Lett.
,
39
(
5
), pp.
421
423
.10.1134/S1063785013050064
23.
Yoo
,
J. Y.
,
2013
, “
The Turbulent Flows of Supercritical Fluids With Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
495
525
.10.1146/annurev-fluid-120710-101234
24.
Knez
,
Z.
,
Markocic
,
E.
,
Leitgeb
,
M.
,
Primozic
,
M.
,
Knez
,
M.
, and
Skerget
,
M.
,
2014
, “
Industrial Applications of Supercritical Fluids: A Review
,”
J. Energy
,
77
, pp.
235
243
.10.1016/j.energy.2014.07.044
25.
Xie
,
G.
,
Xu
,
X.
,
Lei
,
X.
,
Li
,
Z.
,
Li
,
Y.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer Behaviours of Some Supercritical Fluids: A Review
,”
Chin. J. Aeronaut.
, 35(1), pp.
290
306
.10.1016/j.cja.2020.12.022
26.
Jofre
,
L.
,
del Rosario
,
Z. R.
, and
Iaccarino
,
G.
,
2020
, “
Data-Driven Dimensional Analysis of Heat Transfer in Irradiated Particle-Laden Turbulent Flow
,”
Int. J. Multiphase Flow
,
125
, p.
103198
.10.1016/j.ijmultiphaseflow.2019.103198
27.
Orlandi
,
P.
,
2019
, “
Turbulent Kinetic Energy Production and Flow Structures in Flows Past Smooth and Rough Walls
,”
J. Fluid Mech.
,
866
, pp.
897
928
.10.1017/jfm.2019.96
28.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Proc. R. Soc. London
,
15
, pp.
84
99
.10.1098/rspl.1883.0018
29.
Faisst
,
H.
, and
Eckhardt
,
B.
,
2003
, “
Traveling Waves in Pipe Flow
,”
Phys. Rev. Lett.
,
91
(
22
), p.
224502
.10.1103/PhysRevLett.91.224502
30.
Wedin
,
H.
, and
Kerswell
,
R.
,
2004
, “
Exact Coherent Structures in Pipe Flow: Travelling Wave Solutions
,”
J. Fluid Mech.
,
508
, pp.
333
371
.10.1017/S0022112004009346
31.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
32.
Uhlmann
,
M.
,
Pinelli
,
A.
,
Kawahara
,
G.
, and
Sekimoto
,
A.
,
2007
, “
Marginally Turbulent Flow in a Square Duct
,”
J. Fluid Mech.
,
588
, pp.
153
162
.10.1017/S0022112007007604
33.
Owolabi
,
B.
,
Poole
,
R.
, and
Dennis
,
D.
,
2016
, “
Experiments on low-Reynolds-Number Turbulent Flow Through a Square Duct
,”
J. Fluid Mech.
,
798
, pp.
398
410
.10.1017/jfm.2016.314
34.
Hof
,
B.
,
van Doorne
,
C. W. H.
,
Westerweel
,
J.
, and
Nieuwstadt
,
F. T. M.
,
2005
, “
Turbulence Regeneration in Pipe Flow at Moderate Reynolds Numbers
,”
Phys. Rev. Lett.
,
95
(
21
), p.
214502
.10.1103/PhysRevLett.95.214502
35.
Hof
,
B.
,
van Doorne
,
C. W. H.
,
Westerweel
,
J.
,
Nieuwstadt
,
F. T. M.
,
Faisst
,
H.
,
Eckhardt
,
B.
,
Wedin
,
H.
,
Kerswell
,
R. R.
, and
Waleffe
,
F.
,
2004
, “
Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow
,”
Science
,
305
(
5690
), pp.
1594
1598
.10.1126/science.1100393
36.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals and Applications
, 5th ed.,
McGraw-Hill
,
New York
.
37.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
Properties of Gases and Liquids
, 5th ed.,
McGraw-Hill
,
New York
.
38.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2021
,
Thermophysical Properties of Fluid Systems
,
NIST Chemistry Webbook (SRD 69)
, Gaithersburg, MD.https://webbook.nist.gov/chemistry/fluid/
39.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
40.
Reynolds
,
W. C.
, and
Colonna
,
P.
,
2019
,
Thermodynamics: Fundamentals and Engineering Applications
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
41.
Burcat
,
A.
, and
Ruscic
,
B.
,
2005
, “Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables,” Argonne National Laboratory, Lemont, IL, Report No.
ANL-0/20
.https://publications.anl.gov/anlpubs/2005/07/53802.pdf
42.
Guardone
,
A.
,
Vigevano
,
L.
, and
Argrow
,
B. M.
,
2004
, “
Assessment of Thermodynamic Models for Dense Gas Dynamics
,”
Phys. Fluids
,
16
(
11
), pp.
3878
3887
.10.1063/1.1786791
43.
Müller
,
H.
,
Niedermeier
,
C. A.
,
Matheis
,
J.
,
Pfitzner
,
M.
, and
Hickel
,
S.
,
2016
, “
Large-Eddy Simulation of Nitrogen Injection at Trans- and Supercritical Conditions
,”
Phys. Fluids
,
28
(
1
), p.
015102
.10.1063/1.4937948
44.
Young
,
A. F.
,
Pessoa
,
F. L.
, and
Ahón
,
V. R.
,
2017
, “
Comparison of Volume Translation and Co-Volume Functions Applied in the Peng-Robinson EoS for Volumetric Corrections
,”
Fluid Phase Equilib.
,
435
, pp.
73
87
.10.1016/j.fluid.2016.12.016
45.
Chung
,
T. H.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1984
, “
Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity
,”
Ind. Eng. Chem. Fundam.
,
23
(
1
), pp.
8
13
.10.1021/i100013a002
46.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Fund.
,
27
(
4
), pp.
671
679
.10.1021/ie00076a024
47.
Storti
,
F.
,
Bonfadini
,
S.
, and
Criante
,
L.
,
2020
, “
Battery-Free Fully Integrated Microfluidic Light Source for Portable Lab-on-a-Chip Applications
,”
Sci. Rep.
,
12
, p.
12910
.10.1038/s41598-020-69581-z
48.
European Commission,
2020
, “A European Initiative on Processors and Semiconductor Technologies,” European Commission, Brussels, Belgium.
49.
Amnache
,
A.
,
Liamini
,
M.
,
Gauthier
,
F.
,
Beauchesne-Martel
,
P.
,
Omri
,
M.
, and
Fréchette
,
L. G.
,
2020
, “
A MEMS Turbopump for High-Temperature Rankine Micro Heat Engines - Part II: Experimental Demonstration
,”
J. Microelectromech. Syst.
,
29
(
5
), pp.
1239
1303
.10.1109/JMEMS.2020.3008625
50.
van Erp
,
R.
,
Soleimanzadeh
,
R.
,
Nela
,
L.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2020
, “
Co-Designing Electronics With Microfluidics for More Sustainable Cooling
,”
Nature
,
585
(
7824
), pp.
211
216
.10.1038/s41586-020-2666-1
51.
Jofre
,
L.
, and
Urzay
,
J.
,
2020
, “
A Characteristic Length Scale for Density Gradients in Supercritical Monocomponent Flows Near Pseudoboiling
,” Annual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, CA, pp.
277
282
.
You do not currently have access to this content.