Abstract

Advanced energy systems propose use of supercritical fluids (SCFs) as working fluids owing to various advantages associated with SCF. Supercritical water (SCW), supercritical carbon-dioxide (SC–CO2), and supercritical helium (SC–He) find proposed applications in advanced nuclear reactor designs too. Heat transfer behavior of SCFs is still not understood completely. Though there exist many heat transfer correlations and criterion in the literature, they miss having a general consensus among them. In spite of having many reported studies in literature for SCFs under forced convection conditions, studies related to SCF under natural circulation (NC) mode are very limited. In the present study, extensive experiments have been performed with SC–CO2 under NC conditions in tube geometry. The experimental data generated for vertical heated test section at various pressures between 8.0 and 13.0 MPa have been utilized to bring out salient findings related to fluid flow and heat transfer. The data have also been utilized to make comparison with generalized NC flow correlation available in the literature. Besides, few popular heat transfer correlations have been compared with experimentally obtained heat transfer coefficients.

References

1.
NIST, 2022, “Thermophysical Properties of Fluid Systems,” NIST Chemistry WebBook, SRD 69, Gaithersburg, MD, accessed May 24,
2022
, https://webbook.nist.gov/chemistry/fluid/
2.
Bodkha
,
K.
, and
Maheshwari
,
N. K.
,
2021
, “
Heat Transfer in Supercritical Fluids: A Review
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
7
(
3
), p.
030802
.10.1115/1.4048898
3.
Bringer
,
R. P.
, and
Smith
,
J. M.
,
1957
, “
Heat Transfer in the Critical Region
,”
AIChE J.
,
3
(
1
), pp.
49
55
.10.1002/aic.690030110
4.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
4
), pp.
477
484
.10.1115/1.3689139
5.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
6.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference, Shenzhen City, China
, Oct. 21–25, p.
240
.https://inis.iaea.org/search/search.aspx?orig_q=RN:34084057
7.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels – Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
8.
Silin
,
V. A.
,
Voznesensky
,
V. A.
, and
Afrov
,
A. M.
,
1993
, “
The Light Water Integral Reactor With Natural Circulation of the Coolant at Supercritical Pressure B:500 SKDI
,”
Nucl. Eng. Des.
,
144
(
2
), pp.
327
336
.10.1016/0029-5493(93)90148-3
9.
Bushby
,
S. J.
,
Dimmick
,
G. R.
,
Duffey
,
R. B.
,
Spinks
,
N. J.
,
Burrill
,
K. A.
, and
Chan
,
P. S. W.
,
2000
, “
Conceptual Designs for Advanced, High-Temperature CANDU Reactors
,”
Proceeding of the SCR-2000
, Tokyo, Japan, Nov. 6–9, pp.
29
36
.https://inis.iaea.org/search/search.aspx?orig_q=RN:32045733
10.
Yadav
,
A. K.
,
Bhattacharya
,
S.
, and
Ramgopal
,
M.
,
2016
, “
Optimum Operating Conditions for Subcritical/Supercritical Fluid-Based Natural Circulation Loops
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p.
112501
.10.1115/1.4031921
11.
Sadhu
,
S.
,
Ramgopal
,
M.
, and
Bhattacharya
,
S.
,
2018
, “
Steady-State Analysis of a High-Temperature Natural Circulation Loop Based on Water-Cooled Supercritical CO2
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
6
), p.
062502
.10.1115/1.4038541
12.
Yoshikawa
,
S.
,
Smith
,
R. L.
, Jr.
,
Inomata
,
H.
,
Matsumura
,
Y.
, and
Arai
,
K.
,
2005
, “
Performance of a Natural Circulation System for Supercritical Fluids
,”
J. Supercrit. Fluids
,
36
(
1
), pp.
70
80
.10.1016/j.supflu.2005.02.007
13.
T'Joen
,
C.
, and
Rohde
,
M.
,
2012
, “
Experimental Study of the Coupled Thermo-Hydraulic–Neutronic Stability of a Natural Circulation HPLWR
,”
Nucl. Eng. Des.
,
242
, pp.
221
232
.10.1016/j.nucengdes.2011.10.055
14.
Chen
,
L.
,
Deng
,
B. L.
, and
Zhang
,
R. X.
,
2013
, “
Experimental Study of Trans-Critical and Supercritical CO2 Natural Circulation Flow in a Closed Loop
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
1
13
.10.1016/j.applthermaleng.2013.05.017
15.
Adelt
,
M.
, and
Mikielewicz
,
J.
,
1981
, “
Heat Transfer in a Channel at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
24
(
10
), pp.
1667
1674
.10.1016/0017-9310(81)90075-2
16.
Xiong
,
T.
,
Yan
,
X.
,
Xiao
,
Z.
,
Li
,
Y.
,
Huang
,
Y.
, and
Yu
,
J.
,
2012
, “
Experimental Study on Flow Instability in Parallel Channels With Supercritical Water
,”
Ann. Nucl. Energy
,
48
, pp.
60
67
.10.1016/j.anucene.2012.05.018
17.
Sharma
,
M.
,
Vijayan
,
P. K.
,
Pilkhwal
,
D. S.
, and
Asako
,
Y.
,
2013
, “
Steady State and Stability Characteristics of Natural Circulation Loops Operating With Carbon Dioxide at Supercritical Pressures for Open and Closed Loop Boundary Conditions
,”
Nucl. Eng. Des.
,
265
, pp.
737
754
.10.1016/j.nucengdes.2013.07.023
18.
Sadhu
,
S.
,
Ramgopal
,
M.
, and
Bhattacharyya
,
S.
,
2018
, “
Experimental Studies on an Air-Cooled Natural Circulation Loop Based on Supercritical Carbon Dioxide – Part a Steady State Operation
,”
Appl. Therm. Eng.
,
133
, pp.
809
818
.10.1016/j.applthermaleng.2017.10.017
19.
Sadhu
,
S.
,
Ramgopal
,
M.
, and
Bhattacharyya
,
S.
,
2018
, “
Experimental Studies on an Air-Cooled Natural Circulation Loop Based on Supercritical Carbon Dioxide – Part B Transient Operation
,”
Appl. Therm. Eng.
,
133
, pp.
819
827
.10.1016/j.applthermaleng.2017.10.016
20.
Swapnalee
,
B. T.
,
Vijayan
,
P. K.
,
Sharma
,
M.
, and
Pilkhwal
,
D. S.
,
2012
, “
Steady State Flow and Static Instability of Supercritical Natural Circulation Loops
,”
Nucl. Eng. Des.
,
245
, pp.
99
112
.10.1016/j.nucengdes.2012.01.002
21.
Archana
,
V.
,
2017
, “
Steady State and Transient Characteristics of Supercritical Pressure Natural Circulation Loop
,” Ph.D. dissertation,
Homi Bhabha National Institute
, Mumbai, India.
22.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
,
Lv
,
F.
, and
Leung
,
L. K. H.
,
2016
, “
Experiments on the Basic Behavior of Supercritical CO2 Natural Circulation
,”
Nucl. Eng. Des.
,
300
, pp.
376
383
.10.1016/j.nucengdes.2016.01.021
23.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
,
Lv
,
F.
, and
Liu
,
S.
,
2017
, “
Experimental Research and Theoretical Analysis of Flow Instability in Supercritical Carbon Dioxide Natural Circulation Loop
,”
Appl. Energy
,
205
, pp.
813
821
.10.1016/j.apenergy.2017.08.132
24.
Kiss
,
A.
,
Balaskó
,
M.
,
Horváth
,
L.
,
Kis
,
Z.
, and
Aszódi
,
A.
,
2017
, “
Experimental Investigation of the Thermal Hydraulics of Supercritical Water Under Natural Circulation in a Closed Loop
,”
Ann. Nucl. Energy
,
100
(
2
), pp.
178
203
.10.1016/j.anucene.2016.09.020
25.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
26.
United Performance Metals, 2021, “Nickel Alloy 625,” United Performance Metals, Cincinnati, OH, accessed Feb. 18, 2021, https://www.upmet.com/sites/default/files/datasheets/625.pdf
27.
Ambrosini
,
W.
, and
Sharabi
,
M.
,
2008
, “
Dimensionless Parameters in Stability Analysis of Heated Channels With Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
1917
1929
.10.1016/j.nucengdes.2007.09.008
28.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. H. K.
,
2016
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Rectangular Circulation Loop
,”
Appl. Therm. Eng.
,
98
, pp.
39
48
.10.1016/j.applthermaleng.2015.11.110
29.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Publications in Engineering
, Vol.
2
,
University of California
,
Berkeley, CA
, pp.
443
461
.
30.
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Heat Transfer Correlation for Supercritical Carbon Dioxide Flowing Upward in a Vertical Bare Tube
,” Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 24–25, p.
10
.
You do not currently have access to this content.