Abstract

The current work enlightens the flow pattern and thermal scenario of a nanofluid spraying on an inclined permeable rotating disk. The whirling disk is assumed to revolve with the angular speed Ω. The water-based alumina (Al2O3) nanofluid is considered as a functioning liquid. The nanofluid spraying is treated to be magnetically influenced and thermally radiative. The perception of the nanoparticles' diameter and solid–liquid interfacial layer is incorporated precisely at the nanolevel to observe the thermal variations of the nanofluidic motion. How the magnetic effect, permeability, and nanolayer affect nanofluidic transportation is revealed in detail. The leading flow equations are altered nondimensional using apposite similarity translation, and the spectral quasi-linearization method (SQLM) is instigated to tackle those multi-ordered nonlinear equations. Various three-dimensional figures, graphs, and tables are described to detect and analyze the hydrothermal variations. The linear regression slope technique is addressed to extract the reduction or enhancement rate of heat transference. Also, the probable error is estimated statistically to assure that hydrothermal characteristic is correlated with physical parameters. The consequences indicate enhanced heat transport for nanolayers, but reduced heat transmission for nanoparticles' diameter. Thermal profile intensifies for thickness parameter and impermeable surface, whereas decreases for nanoparticles' diameter.

References

1.
Maxwell
,
J. C. A.
,
1881
,
Treatise on Electricity and Magnetism
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
2.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
3.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol.
231
,
ASME
,
New York
, pp.
99
105
.
4.
Wong
,
K. V.
, and
Leon
,
O. D.
,
2010
, “
Applications of Nanofluids: Current and Future
,”
Adv. Mech. Eng.
,
2
, p.
519659
.10.1155/2010/519659
5.
Okonkwo
,
E. C.
,
Wole-Osho
,
I.
,
Almanassra
,
I. W.
,
Abdullatif
,
Y. M.
, and
Al-Ansari
,
T.
,
2021
, “
An Updated Review of Nanofluids in Various Heat Transfer Devices
,”
J. Therm. Anal Calorim.
,
145
(
6
), pp.
2817
2872
.10.1007/s10973-020-09760-2
6.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.10.1016/S0017-9310(01)00175-2
7.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
8.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.10.1016/j.ijheatfluidflow.2007.02.004
9.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
10.
Berger Bioucas
,
F. E.
,
Rausch
,
M. H.
,
Schmidt
,
J.
,
Buck
,
A.
,
Koller
,
T. M.
, and
Froba
,
A. P.
,
2020
, “
Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
,”
Int. J. Thermophys.
,
41
, p.
55
.10.1007/s10765-020-2621-2
11.
Pare
,
A.
, and
Ghosh
,
S. K.
,
2021
, “
A Unique Thermal Conductivity Model (ANN) for Nanofluid Based on Experimental Study
,”
Powder Technol.
,
377
, pp.
429
438
.10.1016/j.powtec.2020.09.011
12.
Timofeeva
,
E. V.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2011
, “
Nanofluids for Heat Transfer: An Engineering Approach
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
182
.10.1186/1556-276X-6-182
13.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
.10.1007/s11051-005-9018-9
14.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
15.
Rana
,
P.
, and
Beg
,
O. A.
,
2015
, “
Mixed Convection Flow Along an Inclined Permeable Plate: Effect of Magnetic Field, Nanolayer Conductivity and Nanoparticle Diameter
,”
Appl. Nanosci.
,
5
(
5
), pp.
569
581
.10.1007/s13204-014-0352-z
16.
Rana
,
P.
,
Dhanai
,
R.
, and
Kumar
,
L.
,
2017
, “
MHD Slip Flow and Heat Transfer of Al2O3–Water Nanofluid Over a Horizontal Shrinking Cylinder Using Buongiorno's Model: Effect of Nanolayer and Nanoparticle Diameter
,”
Adv. Powder Technol.
,
28
(
7
), pp.
1727
1738
.10.1016/j.apt.2017.04.010
17.
S.
,
Md
,
T.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2018
, “
Consequences of Nanoparticle Diameter and Solid–Liquid Interfacial Layer on the SWCNT/EO Nanofluid Flow Over Various Shaped Thin Slendering Needles
,”
J. Phys.
,
56
(
5
), pp.
2439
2447
.10.1016/j.cjph.2018.06.016
18.
Giri
,
S. S.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2021
, “
Influence of Nanoparticle Diameter and Interfacial Layer on Magnetohydrodynamic Nanofluid Flow With Melting Heat Transfer Inside Rotating Channel
,”
Math. Methods Appl. Sci.
,
44
(
2
), pp.
1161
1175
.10.1002/mma.6818
19.
Acharya
,
N.
,
2020
, “
Framing the Impacts of Highly Oscillating Magnetic Field on the Ferrofluid Flow Over a Spinning Disk Considering Nanoparticle Diameter and Solid–Liquid Interfacial Layer
,”
ASME J. Heat Transfer
,
142
(
10
), p.
102503
.10.1115/1.4047503
20.
Acharya
,
N.
,
2021
, “
Spectral Simulation to Investigate the Effects of Nanoparticle Diameter and Nanolayer on the Ferrofluid Flow Over a Slippery Rotating Disk in the Presence of Low Oscillating Magnetic Field
,”
Heat Transfer
,
50
(
6
), pp.
5951
5981
.10.1002/htj.22157
21.
Herrero
,
J.
,
Humphrey
,
J. A. C.
, and
Giralt
,
F.
,
1994
, “
Comparative Analysis of Coupled Flow and Heat Transfer Between co-Rotating Discs in Rotating and Fixed Cylindrical Enclosures
,” Heat Transfer in Gas Turbines, HTD, Vol. 300, M. K. Chyu and N. V. Nirmalan, eds., American Society of Mechanical Engineers, New York, pp. 111–121.
22.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disc System, Rotor–Stator System
,
Research Studies/Wiley
,
Taunton, UK/New York
.
23.
Kármán
,
T. V.
,
1921
, “
Über Laminare Und Turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
(
4
), pp.
233
252
.10.1002/zamm.19210010401
24.
Cochran
,
W. G.
,
1934
, “
The Flow Due to a Rotating Disk
,”
Math. Proc. Cambridge Philos. Soc.
,
30
(
3
), pp.
365
375
.10.1017/S0305004100012561
25.
Stuart
,
J. T.
,
1954
, “
On the Effects of Uniform Suction on the Steady Flow Due to a Rotating Disk
,”
Q. J. Mech. Appl. Math.
,
7
(
4
), pp.
446
457
.10.1093/qjmam/7.4.446
26.
Ackroyd
,
J. A. D.
,
1978
, “
On the Steady Flow Produced by a Rotating Disk With Either Surface Suction or Injection
,”
J. Eng. Math.
,
12
(
3
), pp.
207
220
.10.1007/BF00036459
27.
Khan
,
U.
,
Bilal
,
S.
,
Zaib
,
A.
,
Makinde
,
O. D.
, and
Wakif
,
A.
,
2022
, “
Numerical Simulation of a Nonlinear Coupled Differential System Describing a Convective Flow of Casson Gold–Blood Nanofluid Through a Stretched Rotating Rigid Disk in the Presence of Lorentz Forces and Nonlinear Thermal Radiation
,”
Numer. Methods Partial Differ. Equations
,
38
(
3
), pp.
308
328
.10.1002/num.22620
28.
Waqas
,
H.
,
Farooq
,
U.
,
Naseem
,
R.
,
Hussain
,
S.
, and
Alghamdi
,
M.
,
2021
, “
Impact of MHD Radiative Flow of Hybrid Nanofluid Over a Rotating Disk
,”
Case Stud. Therm. Eng.
,
26
, p.
101015
.10.1016/j.csite.2021.101015
29.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Ann. Rev. Fluid. Mech.
,
23
(
1
), pp.
197
232
.10.1146/annurev.fl.23.010191.001213
30.
Satas
,
D.
,
1986
,
Plastics Finishing and Decoration
,
Van Nostrand
,
New York
.
31.
Mudawar
,
I.
, and
Estes
,
K. A.
,
1996
, “
Optimizing and Predicting CHF in Spray Coating of a Square Surface
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
672
679
.10.1115/1.2822685
32.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1959
, “
A Theory of Rotating Condensation
,”
ASME J. Heat Transfer
,
81
(
2
), pp.
113
120
.10.1115/1.4008150
33.
Beckett
,
P. M.
,
Hudson
,
P. C.
, and
Poots
,
G.
,
1973
, “
Laminar Film Condensation Due to a Rotating Disk
,”
J. Eng. Math.
,
7
(
1
), pp.
63
73
.10.1007/BF01535269
34.
Chary
,
S. P.
, and
Sarma
,
P. K.
,
1976
, “
Condensation on a Rotating Disk With Constant Axial Suction
,”
ASME J. Heat Transfer
,
98
(
4
), pp.
682
684
.10.1115/1.3450624
35.
Wang
,
C. Y.
,
2007
, “
Condensation Film on an Inclined Rotating Disk
,”
Appl. Math. Model.
,
31
(
8
), pp.
1582
1593
.10.1016/j.apm.2006.05.013
36.
Rashidi
,
M. M.
, and
Pour
,
S. A. M.
,
2010
, “
Analytic Solution of Steady Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk by Differential Transform Method
,”
Math. Prob. Eng.
,
2010
, p.
613230
.10.1155/2010/613230
37.
Sheikholeslami
,
M.
,
Ashorynejad
,
H. R.
,
Ganji
,
D. D.
, and
Yildirim
,
A.
,
2012
, “
Homotopy Perturbation Method for Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk
,”
Sci. Iran.
,
19
(
3
), pp.
437
442
.10.1016/j.scient.2012.03.006
38.
Sheikholeslami
,
M.
,
Hatami
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Numerical Investigation of Nanofluid Spraying on an Inclined Rotating Disk for Cooling Process
,”
J. Mol. Liq.
,
211
, pp.
577
583
.10.1016/j.molliq.2015.07.006
39.
Hatami
,
M.
,
Jing
,
D.
, and
Yousif
,
M. A.
,
2018
, “
Three-Dimensional Analysis of Condensation Nanofluid Film on an Inclined Rotating Disk by Efficient Analytical Methods
,”
Arab J. Basic Appl. Sci.
,
25
(
1
), pp.
28
37
.10.1080/25765299.2018.1449415
40.
Gul
,
T.
,
Khan
,
M. A.
,
Khan
,
A.
, and
Shuaib
,
M.
,
2018
, “
Fractional-Order Three-Dimensional Thin-Film Nanofluid Flow on an Inclined Rotating Disk
,”
Eur. Phys. J. Plus
,
133
, p.
500
.10.1140/epjp/i2018-12315-4
41.
Ramzan
,
M.
,
Riasat
,
S.
,
Kadry
,
S.
,
Long
,
C.
,
Nam
,
Y.
, and
Lu
,
D.
,
2019
, “
Numerical Simulation of 3D Condensation Nanofluid Film Flow With Carbon Nanotubes on an Inclined Rotating Disk
,”
Appl. Sci.
,
10
(
1
), p.
168
.10.3390/app10010168
42.
Said
,
S.
,
Mikhail
,
M.
, and
Riad
,
M.
,
2019
, “
Recent Progress in Preparations and Applications of Meso-Porous Alumina
,”
Mater. Sci. Energy Technol.
,
2
(
2
), pp.
288
297
.10.1016/j.mset.2019.02.005
43.
Hassanpour
,
P.
,
Panahi
,
Y.
,
Ebrahimi-Kalan
,
A.
,
Akbarzadeh
,
A.
,
Davaran
,
S.
,
Nasibova
,
A. N.
,
Khalilov
,
R.
, and
Kavetskyy
,
T.
,
2018
, “
Biomedical Applications of Aluminium Oxide Nanoparticle
,”
Micro Nano Lett.
,
13
(
9
), pp.
1227
1231
.10.1049/mnl.2018.5070
44.
Hashimoto
,
T.
,
Fujimura
,
M.
, and
Kawai
,
H.
,
1980
, “
Domain-Boundary Structure of Styreneisoprene Block Copolymer Films Cast From Solutions. 5. Molecular-Weight Dependence of Spherical Microdomains
,”
Macromolecules
,
13
(
6
), pp.
1660
1669
.10.1021/ma60078a055
45.
Li
,
Z. H.
,
Gong
,
Y. J.
,
Pu
,
M.
,
Wu
,
D.
,
Sun
,
Y. H.
,
Wang
,
J.
,
Liu
,
Y.
, and
Dong
,
B. J.
,
2001
, “
Determination of Interfacial Layer Thickness of a Pseudo Two-Phase System by Extension of the Debye Equation
,”
J. Phys. D
,
34
(
14
), pp.
2085
2088
.10.1088/0022-3727/34/14/301
46.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J.
,
2004
, “
Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4277
4284
.10.1016/j.ijheatmasstransfer.2004.05.016
47.
Yu
,
C. J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
,
2000
, “
Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study
,”
Phys. B
,
283
(
1–3
), pp.
27
31
.10.1016/S0921-4526(99)01885-2
48.
Acharya
,
N.
,
2020
, “
Spectral Quasi‐Linearization Simulation of Radiative Nanofluidic Transport Over a Bended Surface Considering the Effects of Multiple Convective Conditions
,”
Eur. J. Mech. B
,
84
, pp.
139
154
.10.1016/j.euromechflu.2020.06.004
49.
Acharya
,
N.
,
2021
, “
Spectral Simulation to Investigate the Effects of Active Passive Controls of Nanoparticles on the Radiative Nanofluidic Transport Over a Spinning Disk
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031023
.10.1115/1.4048677
50.
Bellman
,
R. E.
, and
Kalaba
,
R. E.
,
1965
,
Quasilinearization and Nonlinear Boundary‐Value Problems
, Vol.
3
,
American Elsevier
,
New York
.
51.
Wakif
,
A.
,
Animasaun
,
I. L.
,
Narayana
,
P. V. S.
, and
Sarojamma
,
G.
,
2020
, “
Meta-Analysis on Thermo-Migration of Tiny/Nano-Sized Particles in the Motion of Various Fluids
,”
Chin. J. Phys.
,
68
, pp.
293
307
.10.1016/j.cjph.2019.12.002
52.
Animasaun
,
I. L.
,
Ibraheem
,
R. O.
,
Mahanthesh
,
B.
, and
Babatunde
,
H. A.
,
2019
, “
A Meta-Analysis on the Effects of Haphazard Motion of Tiny/Nano-Sized Particles on the Dynamics and Other Physical Properties of Some Fluids
,”
Chin. J. Phys.
,
60
, pp.
676
687
.10.1016/j.cjph.2019.06.007
53.
Fisher
,
R. A.
,
1921
, “
On the ‘Probable Error’ of a Coefficient of Correlation Deduced From a Small Sample
,”
Metron
,
1
, pp.
3
32
.https://digital.library.adelaide.edu.au/dspace/handle/2440/15169
You do not currently have access to this content.