Abstract

This paper numerically investigates the optimization of the geometric parameters and the coolant's inflow states of the perforated micropin-fins (MPFs) heat sink using an elitist nondominated sorting genetic algorithm-II (NSGA-II) coupled with a finite volume-based computational fluid dynamics (CFD) solver. Square-shaped MPFs with two circular perforations were considered for the investigations on the fluid flow and conjugate heat transfer using numerical simulations. Five design variables (two perforation diameters, their respective locations, and the inflow velocity) with the essential constrained equations were optimized to search for the optimal solutions. Two objective functions, viz., Nusselt number (Nu) and friction factor (f), were selected to evaluate the hydrothermal performances of the perforated MPFs heat sink. The optimization was performed for 52 generations with a population size of 30. We obtained the Pareto optimal solutions, which gave the design boundary of the important parameters. Some of the cases of the Pareto solutions were also investigated in detail to understand the underlying thermal physics and structural rigidity under thermal and hydraulic stresses. It is observed that the MPF's stiffness was not compromised upon introducing two perforations. This study identified different thermohydraulic features responsible for optimal performance at different inflow velocity regimes. The present paper demonstrates that this optimization technique has led to a better understanding of the underlying thermal physics of complex electronic cooling equipment while systematically exploring the design space.

References

1.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2018
, “
Review on Heat and Fluid Flow in Micro Pin Fin Heat Sinks Under Single-Phase and Two-Phase Flow Conditions
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
3
), pp.
153
197
.10.1080/15567265.2018.1475525
2.
Băjenescu
,
T.-M.
,
2021
, “
Miniaturisation of Electronic Components and the Problem of Devices Overheating
,”
EEA-Electroteh., Electr. Autom.
,
69
(
2
), pp.
53
58
.10.46904/eea.21.69.2.1108006
3.
Vilarrubí
,
M.
,
Riera
,
S.
,
Ibañez
,
M.
,
Omri
,
M.
,
Laguna
,
G.
,
Fréchette
,
L.
, and
Barrau
,
J.
,
2018
, “
Experimental and Numerical Study of Micro-Pin-Fin Heat Sinks With Variable Density for Increased Temperature Uniformity
,”
Int. J. Therm. Sci.
,
132
, pp.
424
434
.10.1016/j.ijthermalsci.2018.06.019
4.
Mohammadpour
,
J.
,
Salehi
,
F.
,
Sheikholeslami
,
M.
,
Masoudi
,
M.
, and
Lee
,
A.
,
2021
, “
Optimization of Nanofluid Heat Transfer in a Microchannel Heat Sink With Multiple Synthetic Jets Based on CFD-DPM and MLA
,”
Int. J. Therm. Sci.
,
167
, p.
107008
.10.1016/j.ijthermalsci.2021.107008
5.
Ismayilov
,
F.
,
Akturk
,
A.
, and
Peles
,
Y.
,
2021
, “
Systematic Micro Heat Sink Optimization Based on Hydrofoil Shape Pin Fins
,”
Case Stud. Therm. Eng.
,
26
, p.
101028
.10.1016/j.csite.2021.101028
6.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Ghanbarpour
,
M.
,
Jaguemont
,
J.
,
Sokkeh
,
M. A.
,
Gandoman
,
F. H.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2020
, “
A New Concept of Thermal Management System in Li-Ion Battery Using Air Cooling and Heat Pipe for Electric Vehicles
,”
Appl. Therm. Eng.
,
174
, p.
115280
.10.1016/j.applthermaleng.2020.115280
7.
Rajabifar
,
B.
,
Seyf
,
H. R.
,
Zhang
,
Y.
, and
Khanna
,
S. K.
,
2016
, “
Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
6
), p.
062401
.10.1115/1.4032834
8.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T. E.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A. G.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Microgaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
9.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
M.
,
Yu
,
Y.
, and
Cui
,
T.
,
2018
, “
Active Heat Sink With Piezoelectric Translational Agitators, Piezoelectric Synthetic Jets, and Micro Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
190
199
.10.1016/j.expthermflusci.2018.07.035
10.
Moore
,
G. E.
,
2006
, “
Cramming More Components Onto Integrated Circuits, Reprinted From Electronics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff
,”
IEEE Solid-State Circuits Soc. Newsl.
,
11
(
3
), pp.
33
35
.10.1109/N-SSC.2006.4785860
11.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
T.
,
Zhang
,
M.
,
North
,
M.
, and
Cui
,
T.
,
2016
, “
Enhanced Heat Transfer of Heat Sink Channels With Micro Pin Fin Roughened Walls
,”
Int. J. Heat Mass Transfer
,
92
, pp.
617
627
.10.1016/j.ijheatmasstransfer.2015.09.014
12.
Li
,
X. J.
,
Zhang
,
J. Z.
, and
Tan
,
X. m.
,
2018
, “
Effects of Piezoelectric Fan on Overall Performance of Air-Based Micro Pin-Fin Heat Sink
,”
Int. J. Therm. Sci.
,
126
, pp.
1
12
.10.1016/j.ijthermalsci.2017.12.018
13.
Hua
,
J.
,
Li
,
G.
,
Zhao
,
X.
, and
Li
,
Q.
,
2017
, “
Experimental Study on Thermal Performance of Micro Pin Fin Heat Sinks With Various Shapes
,”
Heat Mass Transfer Stoffuebertrag.
,
53
(
3
), pp.
1093
1104
.10.1007/s00231-016-1880-8
14.
Zhao
,
J.
,
Huang
,
S.
,
Gong
,
L.
, and
Huang
,
Z.
,
2016
, “
Numerical Study and Optimizing on Micro Square Pin-Fin Heat Sink for Electronic Cooling
,”
Appl. Therm. Eng.
,
93
, pp.
1347
1359
.10.1016/j.applthermaleng.2015.08.105
15.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
TCPT-2006-096.R2: Micro Scale Pin Fin Heat Sinks - Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.10.1109/TCAPT.2007.906334
16.
Yang
,
D.
,
Jin
,
Z.
,
Wang
,
Y.
,
Ding
,
G.
, and
Wang
,
G.
,
2017
, “
Heat Removal Capacity of Laminar Coolant Flow in a Micro Channel Heat Sink With Different Pin Fins
,”
Int. J. Heat Mass Transfer
,
113
, pp.
366
372
.10.1016/j.ijheatmasstransfer.2017.05.106
17.
Sakanova
,
A.
, and
Tseng
,
K. J.
,
2018
, “
Comparison of Pin-Fin and Finned Shape Heat Sink for Power Electronics in Future Aircraft
,”
Appl. Therm. Eng.
,
136
, pp.
364
374
.10.1016/j.applthermaleng.2018.03.020
18.
İzci
,
T.
,
Koz
,
M.
, and
Koşar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
.10.1080/01457632.2015.1010921
19.
Ghalambaz
,
M.
,
Mehryan
,
S. A. M.
,
Zahmatkesh
,
I.
, and
Chamkha
,
A.
,
2020
, “
Free Convection Heat Transfer Analysis of a Suspension of Nano–Encapsulated Phase Change Materials (NEPCMs) in an Inclined Porous Cavity
,”
Int. J. Therm. Sci.
,
157
, p.
106503
.10.1016/j.ijthermalsci.2020.106503
20.
Rasouli
,
E.
, and
Narayanan
,
V.
,
2016
, “
Single-Phase Cryogenic Flow and Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Heat Transfer Eng.
,
37
(
11
), pp.
994
1011
.10.1080/01457632.2015.1098271
21.
Saha
,
A. K.
, and
Acharya
,
S.
,
2003
, “
Parametric Study of Unsteady Flow and Heat Transfer in a Pin-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3815
3830
.10.1016/S0017-9310(03)00190-X
22.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.10.1016/j.ijthermalsci.2010.06.011
23.
Lee
,
Y. J.
,
Singh
,
P. K.
, and
Lee
,
P. S.
,
2015
, “
Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins With Parametric Study
,”
Int. J. Heat Mass Transfer
,
81
, pp.
325
336
.10.1016/j.ijheatmasstransfer.2014.10.018
24.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
25.
Abdoli
,
A.
,
Jimenez
,
G.
, and
Dulikravich
,
G. S.
,
2015
, “
Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes With a Hot Spot
,”
Int. J. Therm. Sci.
,
90
, pp.
290
297
.10.1016/j.ijthermalsci.2014.12.021
26.
Chiu
,
H. C.
,
Hsieh
,
R. H.
,
Wang
,
K.
,
Jang
,
J. H.
, and
Yu
,
C. R.
,
2017
, “
The Heat Transfer Characteristics of Liquid Cooling Heat Sink With Micro Pin Fins
,”
Int. Commun. Heat Mass Transfer
,
86
(
2017
), pp.
174
180
.10.1016/j.icheatmasstransfer.2017.05.027
27.
Ahmadian-Elmi
,
M.
,
Mashayekhi
,
A.
,
Nourazar
,
S. S.
, and
Vafai
,
K.
,
2021
, “
A Comprehensive Study on Parametric Optimization of the Pin-Fin Heat Sink to Improve Its Thermal and Hydraulic Characteristics
,”
Int. J. Heat Mass Transfer
,
180
, p.
121797
.10.1016/j.ijheatmasstransfer.2021.121797
28.
Zhu
,
L.
, and
Yu
,
J.
,
2017
, “
Optimization of Heat Sink of Thermoelectric Cooler Using Entropy Generation Analysis
,”
Int. J. Therm. Sci.
,
118
, pp.
168
175
.10.1016/j.ijthermalsci.2017.04.015
29.
Li
,
P.
,
Luo
,
Y.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2018
, “
Flow and Heat Transfer Characteristics and Optimization Study on the Water-Cooled Microchannel Heat Sinks With Dimple and Pin-Fin
,”
Int. J. Heat Mass Transfer
,
119
, pp.
152
162
.10.1016/j.ijheatmasstransfer.2017.11.112
30.
Chong
,
S. H.
,
Ooi
,
K. T.
, and
Wong
,
T. N.
,
2002
, “
Optimisation of Single and Double Layer Counter Flow Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
22
(
14
), pp.
1569
1585
.10.1016/S1359-4311(02)00083-2
31.
Jeevan
,
K.
,
Azid
,
I. A.
, and
Seetharamu
,
K. N.
,
2004
, “
Optimization of Double Layer Counter Flow (DLCF) Micro-Channel Heat Sink Used for Cooling Chips Directly
,” Proceedings of Sixth Electron. Packaging Technology Conference (
EPTC
), Singapore, Dec. 8–10, pp.
553
558
.10.1109/EPTC.2004.1396669
32.
Hung
,
T. C.
,
Yan
,
W. M.
,
Wang
,
X. D.
, and
Huang
,
Y. X.
,
2012
, “
Optimal Design of Geometric Parameters of Double-Layered Microchannel Heat Sinks
,”
Int. J. Heat Mass Transf
,.,
55
(
11–12
), pp.
3262
3272
.10.1016/j.ijheatmasstransfer.2012.02.059
33.
Lin
,
L.
,
Chen
,
Y. Y.
,
Zhang
,
X. X.
, and
Wang
,
X. D.
,
2014
, “
Optimization of Geometry and Flow Rate Distribution for Double-Layer Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
78
, pp.
158
168
.10.1016/j.ijthermalsci.2013.12.009
34.
Bahiraei
,
M.
,
Heshmatian
,
S.
, and
Keshavarzi
,
M.
,
2019
, “
Multi-Criterion Optimization of Thermohydraulic Performance of a Mini Pin Fin Heat Sink Operated With Ecofriendly Graphene Nanoplatelets Nanofluid Considering Geometrical Characteristics
,”
J. Mol. Liq.
,
276
, pp.
653
666
.10.1016/j.molliq.2018.12.025
35.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2169
2188
.10.1016/j.ijheatmasstransfer.2008.11.015
36.
Husain
,
A.
, and
Kim
,
K. Y.
,
2008
, “
Optimization of a Microchannel Heat Sink With Temperature Dependent Fluid Properties
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1101
1107
.10.1016/j.applthermaleng.2007.12.001
37.
Zeng
,
S.
,
Kanargi
,
B.
, and
Lee
,
P. S.
,
2018
, “
Experimental and Numerical Investigation of a Mini Channel Forced Air Heat Sink Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
121
, pp.
663
679
.10.1016/j.ijheatmasstransfer.2018.01.039
38.
Ismayilov
,
F.
,
Akturk
,
A.
, and
Peles
,
Y.
,
2021
, “
Systematic Micro Heat Sink Optimization Based on Hydrofoil Shape Pin Fins,” Case Stud
,”
Therm. Eng.
,
26
, p.
101028
.
39.
Adham
,
A. M.
,
Mohd-Ghazali
,
N.
, and
Ahmad
,
R.
,
2012
, “
Optimization of an Ammonia-Cooled Rectangular Microchannel Heat Sink Using Multi-Objective Non-Dominated Sorting Genetic Algorithm (NSGA2)
,”
Heat Mass Transfer
,
48
(
10
), pp.
1723
1733
.10.1007/s00231-012-1016-8
40.
Yildizeli
,
A.
, and
Cadirci
,
S.
,
2020
, “
Multi Objective Optimization of a Micro-Channel Heat Sink Through Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
146
, p.
118847
.10.1016/j.ijheatmasstransfer.2019.118847
41.
Hou
,
X.
,
Xing
,
Y.
, and
Hao
,
Z.
,
2021
, “
Multi-Objective Optimization of a Composite Phase Change Material-Based Heat Sink Under Non-Uniform Discrete Heating
,”
Appl. Therm. Eng.
,
197
, p.
117435
.10.1016/j.applthermaleng.2021.117435
42.
Radmard
,
V.
,
Hadad
,
Y.
,
Rangarajan
,
S.
,
Hoang
,
C. H.
,
Fallahtafti
,
N.
,
Arvin
,
C. L.
,
Sikka
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2021
, “
Multi-Objective Optimization of a Chip-Attached Micro Pin Fin Liquid Cooling System
,”
Appl. Therm. Eng.
,
195
, p.
117187
.10.1016/j.applthermaleng.2021.117187
43.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2019
, “
Numerical Investigation on Heat Transfer Enhancement With Perforated Square Micro-Pin Fin Heat Sink for Electronic Cooling Application
,” IEEE 21st Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 4–6, pp.
241
246
.10.1109/EPTC47984.2019.9026623
44.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2021
, “
Computational Analysis of Perforation Effect on the Thermo-Hydraulic Performance of Micro Pin-Fin Heat Sink
,”
Int. J. Therm. Sci.
,
163
, p.
106857
.10.1016/j.ijthermalsci.2021.106857
45.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
46.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.10.1080/00401706.1987.10488205
47.
Pekdemir
,
T.
,
1994
, “
Convective Mass Transfer From Stationary and Rotating Cylinders in a Jet Flow
,” Doctoral dissertation, University of Exeter, Exeter, UK.
You do not currently have access to this content.